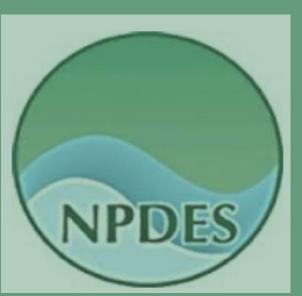


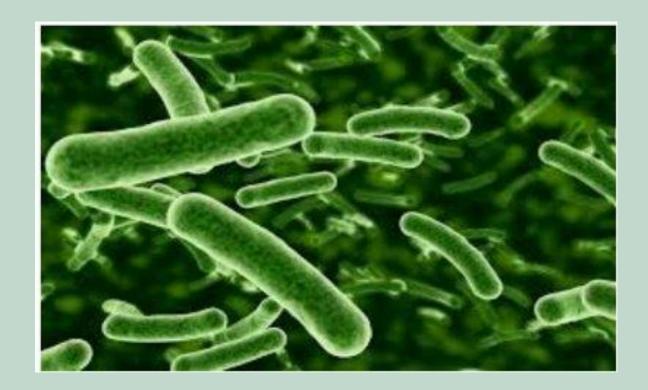
Dr. Preetha Biswas, Director of Microbiology, R&D Co-Author: Dr. Lei Zhang, Principal Scientist, Microbiology R&D

Outline


Background

For Wastewater Testing

- Clean Water Act (CWA)
 - Established a national commitment to restore and maintain integrity of the nation's waters
 - Improving the health of rivers, lakes, and coastal waters


- National Pollutant Discharge Elimination System (NPDES)
 - permit program
 - Section 402 CWA
 - Regulating point sources that discharge pollutants to waters

Background

For Wastewater Testing

- Microbiological water pollution
- Indicators of microbial water safety
- Commonly used indicator bacteria for water fecal contamination
 - Fecal coliform bacteria
 - E. coli
 - Enterococci

Colitag Potable water testing

- ColitagTM originally designed for simultaneous detection of $E.\ coli$ and Total Coliforms in drinking water.
- Colitag for Drinking Water testing is validated both for qualitative and quantitative. Works in presence/absence method, or most probable number-based methodology.

Colitag – Overview

Potable water testing

Colitag medium and method using multi-well MPNTrayTM for enumeration of *E. coli* and fecal coliforms.

- Detection is based on the presence of two enzymes
 - B-galactosidase
 - Coliforms, yellow
 - B-glucuronidase
 - *E. coli*, fluorescence

```
ONPG - Coliforms (B-Galactosidase) O - Nitrophenol

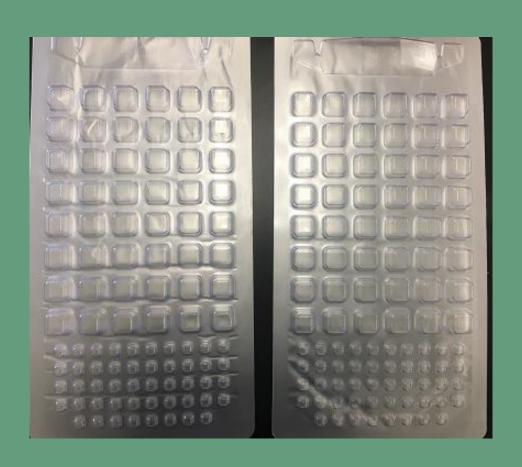
MUG - E. coli (B-Glucuronidase) 4 - Methyl - Umbelliferone
```

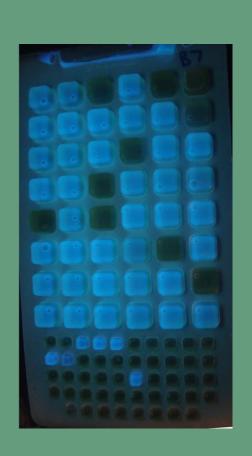
- Quantification by most probable number (MPN) method using the number of positive versus negative wells
 - Multi-well tray (97-well)

Objective

For Wastewater Testing

• EPA Microbiological ATP Protocol and Methods to be followed as guideline to evaluate the performance of Colitag medium using multi-well MPNTray, for enumeration of *E. coli* and Fecal Coliform Bacteria in wastewater

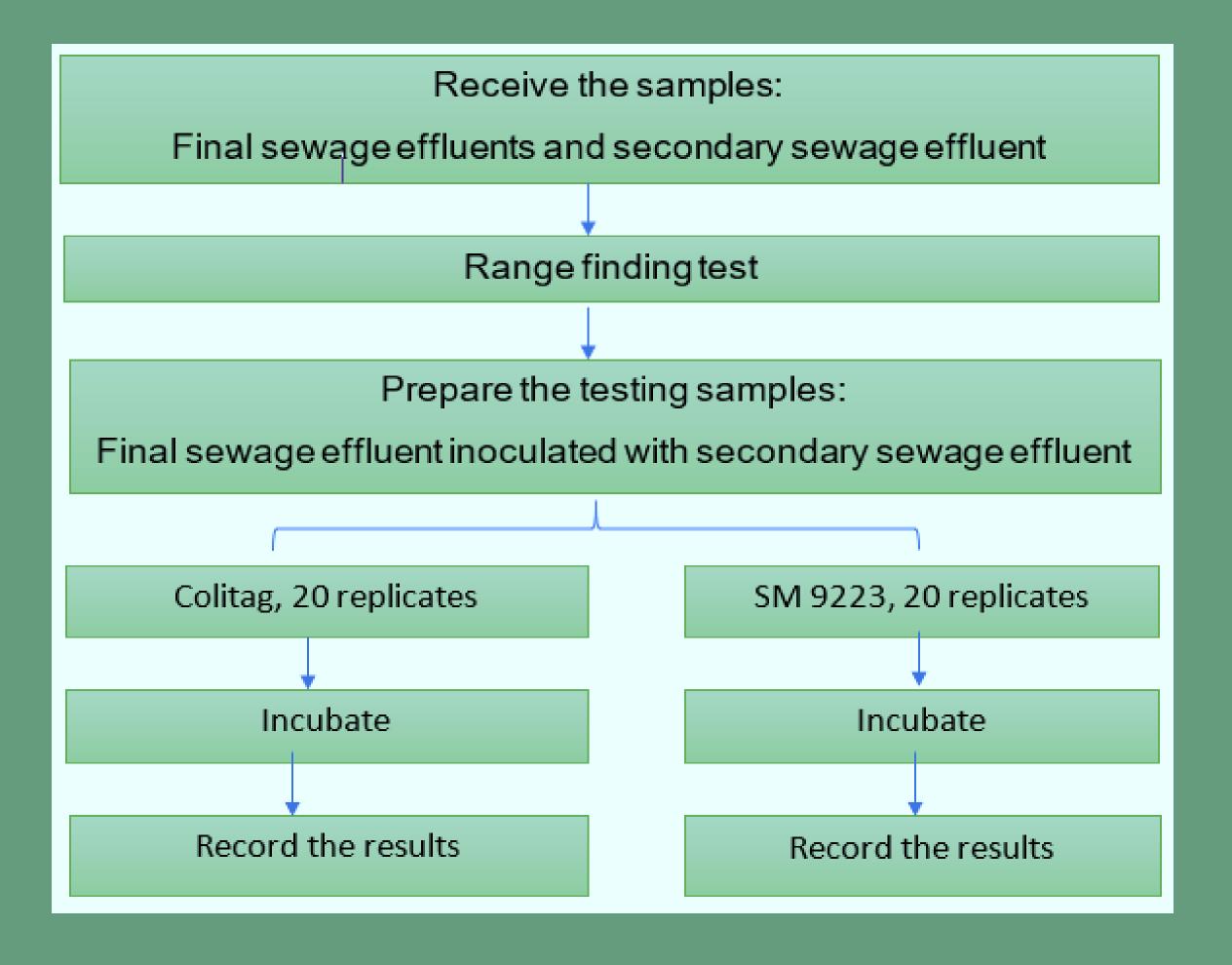



ATP Study Requirement

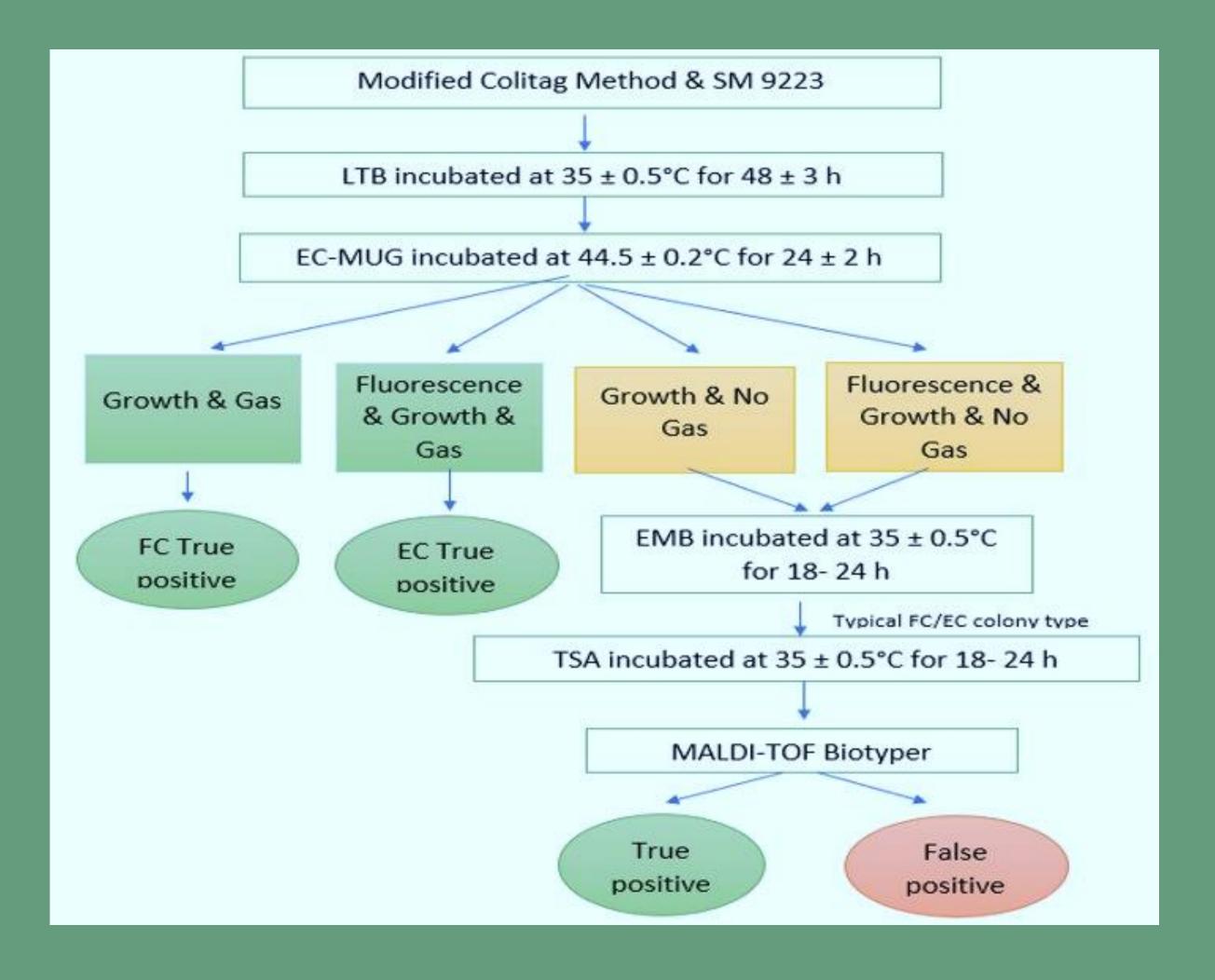
- Follow the Alternate Test Procedure (ATP) guidelines
- Collaboration with EPA coordinator and advisors for review and advice on study proposal – and approval of the method

ATP Study Requirement

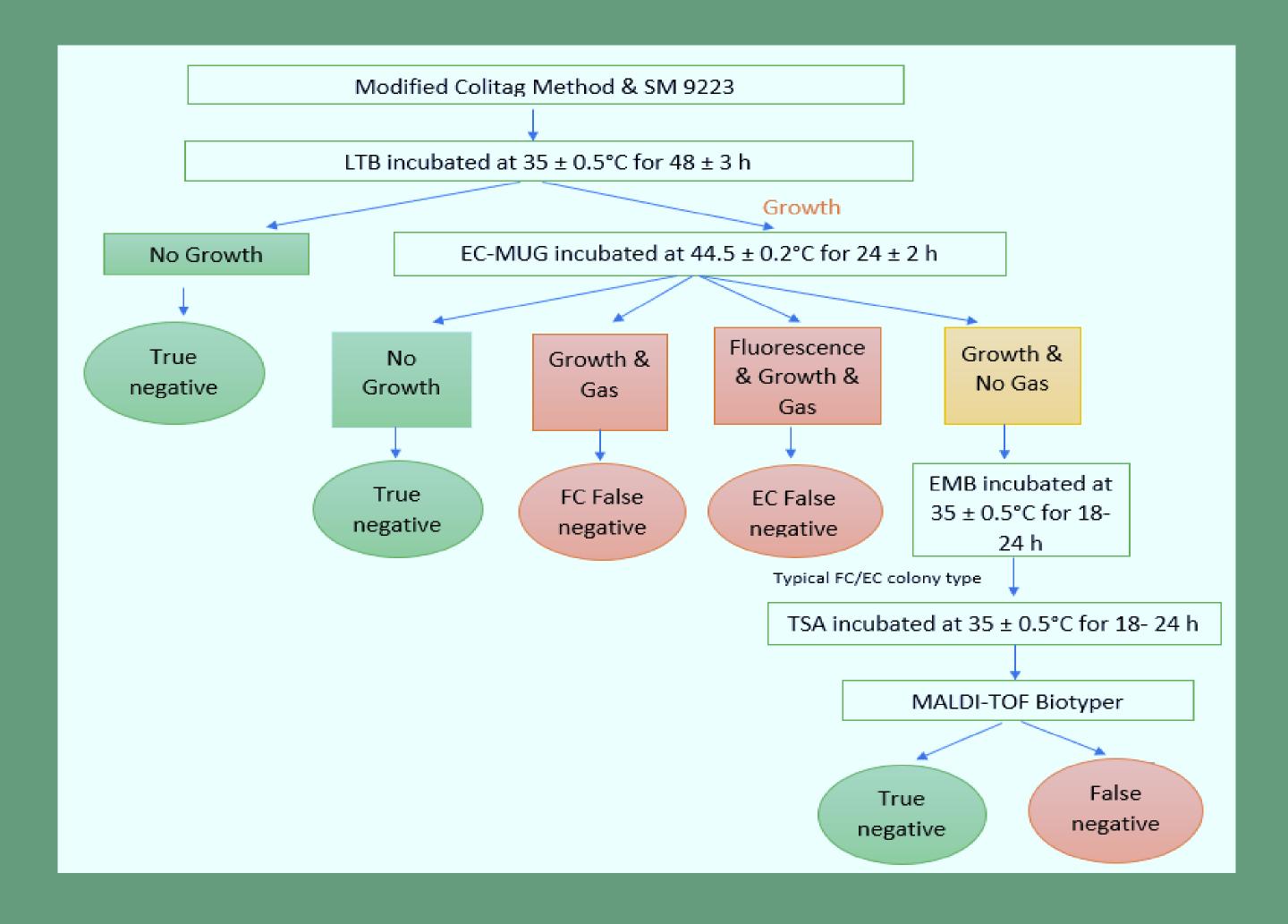
Wastewater Testing


Side-by-Side Comparison

- Parallel testing of the ATP and the reference method
- Ten sewage samples from geographic diverse wastewater plant locations
 - Secondary effluent spiked into final sewage targeting to achieve a 20-200 MPN/100 mL sample
- Twenty replicates for each sample to be evaluated


Side-by-Side Comparison ATP Study Plan

Sample source			Target	Analysis	Minimum
Type	Number	Replicates	Analysis	method	comparability results
	10	20		SM 9223	200
Wastewater	10	20	FC	Colitag™	200
	10 20			SM 9223	200
		E. coli	Colitag™	200	


Side-by-Side Comparison Study Flow Chart

Confirmation Flow Chart for Positive Results

Confirmation Flow Chart for Negative Results

Internal Preliminary Test – Recovery of E. coli

Colitag for Wastewater Testing

	Test 1,	n=20	Test 2, n=20		
	Average counts RSD (%) per 100 mL		Average counts per 100 mL	RSD (%)	
Colitag	48	20.51	22	23.44	
SM 9223B	55	14.23	26	26.66	
1603	46	16.92	19	33.76	

Verification	Colitag	SM 9223B	1603
Sensitivity	94.7%	86.4%	90%
Specificity	90.5%	94.4%	100%

Internal Preliminary Test – Recovery of FC

Colitag for Wastewater Testing

	Test 1, n	=20	Test 2, n	=20
	Average counts per 100 mL		Average counts per 100 mL	RSD (%)
Colitag	23	21.00	78	18.99
SM 9223B	13	33.56	75	17.28
SM 9222D	24	34.012	66	14.30

Verification	Colitag	SM 9223B	SM 9222D
Sensitivity	100%	95.2%	100%
Specificity	100%	100%	100%

Internal Data: Inclusivity Testing

Colitag Specificity

Inclusivity Organisms		Inoculum (CFU/100 mL)	ONPG (18-24h, 35°C)	MUG (18-24h, 35°C)
Citrobacter freundii	ATCC 6879	21	Positive	Negative
Citrobacter freundii	ATCC 8090	9	Positive	Negative
Cronobacter sakazakii	ATCC 29004	52	Positive	Negative
• Enterobacter amnigenus	ATCC 51818	43	Positive	Negative
Escherichia coli	ATCC 8739	18	Positive	Positive
Escherichia coli	ATCC 25922	26	Positive	Positive
Escherichia coli	CDC 984	88	Positive	Positive
Escherichia coli	ATCC 11775	50	Positive	Positive
Escherichia coli	ATCC 11229	20	Positive	Positive
 Hafnia alvei 	ATCC 51815	42	Positive	Negative
Hafnia paralvei	FSL-W4-0268	47	Positive	Negative
Klebsiella oxytoca	ATCC 2170	28	Positive	Negative
Klebsiella pneumoniae	ATCC 13883	21	Positive	Negative
Klebsiella pneumoniae	ATCC 27736	16	Positive	Negative
• Serratia marcescens	ATCC 8100	20	Positive	Negative

Internal Data: Exclusivity Testing

Colitag Specificity

Exclusivity Orga	nisms	Inoculum (CFU/100 mL)	ONPG (48h, 35°C)	MUG (48h, 35°C)
 Aeromonas hydrophilia 	ATCC 35654	9.1 x 10 ⁵	Negative	Negative
 Aeromonas hydrophilia 	ATCC 7966	4.0 x 10 ⁶	Negative	Negative
Acinetobacter baumannii	ATCC 19606	5.4 x 10 ⁵	Negative	Negative
 Alcaligenes faecalis 	ATCC 925	1.0 x 10 ⁶	Negative	Negative
• Enterococcus faecalis	ATCC 29212	1.9 x 10 ⁶	Negative	Negative
Kocuria rizophilia	ATCC 9341	6.7 x 10 ⁵	Negative	Negative
 Pseudomonas aerugniosa 	ATCC 9027	2.3 x 10 ⁶	Negative	Negative
 Pseudomonas aerugniosa 	ATCC 10145	2.8 x 10 ⁶	Negative	Negative
Staphylococcus aureus	ATCC 25923	3.3 x 10 ⁵	Negative	Negative
 Bacillus subtilis 	ATCC 9372	2.7 x 10 ⁴	Negative	Negative
 Bacillus subtilis 	ATCC 6633	4.3 x10 ⁵	Negative	Negative

Side-by-Side Comparison ATP Study Plan - Recap

Sample source					Minimum
Type	Number	Replicates	Target Analysis	Analysis method	comparability results
	10	20	FC	SM 9223	200
Wastewater	10	20		Colitag™	200
	10 20	20		SM 9223	200
		E. coli	Colitag™	200	

ATP Study Side-by-Side Comparison

Wastewater Testing

Review of study result:

Mean recovery for each matrix

Precision: RSD

$$RSD = \frac{SD}{Mean} * 100 \%$$
 Where,
$$SD = the \ standard \ deviation \ of \ all \ recovered \ amounts$$
 Mean = the mean of all recovered amounts

ATP Study Side-by-Side Comparison

Wastewater Testing

Review of study result:

False negative rates

		Method		
		New	Reference	Total
D t	True +	TP₁	TP ₂	TP ₁ + TP ₂
Result	False -	FN₁	FN ₂	FN ₁ + FN ₂
	Total	TP ₁ +FN ₁	TP ₂ + FN ₂	TP ₁ + TP ₂ + FN ₁ + FN ₂

False positive rates

		Method		
		New	Reference	Total
Result	False +	FP₁	FP ₂	FP ₁ + FP ₂
Kesuit	True -	TN₁	TN ₂	TN ₁ + TN ₂
	Total	FP ₁ + TN ₁	FP ₂ + TN ₂	FP ₁ + FP ₂ + TN ₁ + TN ₂

QC Acceptance Criteria-Based
 Method Blank, Positive Control and Media Sterility

Thanks to the EPA Team

Thank you for listening

Get in touch

www.NEOGEN.com

