

Rapid Greenhouse Gas Analysis by Gas Chromatography

Allison Mason – System GC Product Manager Shimadzu Scientific Instruments NEMC 2022

Green House Gas Emissions in US

GHG Reduction Programs & Strategies

- Energy Efficiency
- Renewable Energy
- Supply Chain
- Waste Reduction and Diversion Strategies
- Reduce Methane Emissions
- Increase Fuel Efficiency in Transportation and Logistics

GHG Reduction Programs & Strategies

- Energy Efficiency
- Renewable Energy
- Supply Chain
- Waste Reduction and Diversion Strategies
- Reduce Methane Emissions
- Increase Fuel Efficiency in Transportation and Logistics

Research & Innovation on going in multiple sectors and academia to implement suitable industrial processes, based on green chemistry.

GHG Reduction Programs & Strategies

Research & Innovation on going in multiple sectors and academia to implement suitable industrial processes, based on green chemistry.

Key to the success of these efforts: Proper and timely monitoring of GHG generated

Analytical Techniques

Gas Monitors

- Good for continuous monitoring of flowing systems
- Require LARGE amounts of sample (100 mL/min minimum flow rate)

Gas Chromatography

- Quantitative results
- Run times depend upon system design
- Sample required can be 1 mL or less, depending on setup
- Different sample introduction techniques can be used

Gas Chromatography Drivers

• Why not GCMS?

- GCMS is great for universal detection, but it is not suitable for air components that are found in the background.
- The sensitivity is not as great as specialty detectors like the ECD.

• What about water?

- Any moisture in the samples would be in vapor phase (since only gas is injected). The columns selected in this application are rugged with regards to water.
- The system can be baked out at the end of each day at 120 C to remove any residual water in the system.

Why not use a universal detector instead of multiple specialty detectors?

- Universal detectors like a TCD or BID can be used, but a universal detector will detect all sample components (including the matrix). The signal from the different components may interfere with the signal of the targets of interest, and even hide it.
- There isn't a good universal column for these analytes.

• What if my sample is in Exetainer Vials and my standard is in a cylinder?

• Variety of sample introduction techniques can be used with Gas Chromatographs.

Gas Chromatography Sample Introduction

Multiple Sample Introduction Techniques

- Gas sampling valve flush on GC Top Deck for AOC-6000
- Specialty trays for Exetainer Vials for easy sampling
- Single Inlet for manual gas tight syringe injection
- External bulkheads for gas sample valve injection
 - Tedlar bags, Summa Cannisters, Standards
 - Reactor systems with sufficient headspace

Gas Chromatography Setup

- GC-2030
 - Small Footprint
- 3.5 minute run time
 - Capillary Optimized
 - CH₄, CO, CO₂, N₂O
 - If present, C_2H_4 , C_2H_6 , C_2H_2 are analyzed
- Isothermal Run
 - GC run time = GC cycle time
- Gas Sample Valve with 1 mL loop
- Nitrogen carrier

GC Flowpath

GC Chromatograms - ECD

GC Chromatograms – Jetanizer FID

Linearity- Jetanizer FID

Concentration of Standards (ppm)								
	Low TOGAS	Low ppm Std	12% CO₂	14% CO₂	8% CO₂	CO₂ Balance		
Analytes	Standard 1	Standard 2	Standard 3	Standard 4	Standard 5	Standard 7		
Carbon Monoxide	100	0.96	59800	9900	199900	0		
Methane	100	0.87	149900	60100	11900	53.5		
Carbon Dioxide	400	2.55	120100	140100	78900	999935		

GC Chromatograms – Jetanizer FID

Limits of Detection and Repeatability

ANALYTE	DETECTOR	RETENTION TIME (MIN)	AVERAGE PEAK AREA	RSD% (N=3)	S/N	CALCULATED LOQ (PPM)	CALCULATED LOD (PPM)
NITROUS OXIDE	ECD	1.72	6,597	0.18	32.50	0.31 (±0.02)	0.10 (±0.006)
METHANE	Jetanizer™-FID	1.46	9,914	0.72	46.37	1.11 (±0.2)	0.37 (±0.08)
CARBON DIOXIDE	Jetanizer™-FID	1.88	1,227,780	0.31	5267.50	1.18 (±0.2)	0.39 (±0.08)

ANALYTE	DETECTOR	RETENTION TIME (MIN)	AVERAGE PEAK AREA	RSD% (N=3)
CARBON MONOXIDE	Jetanizer™-FID	1.39	8601785	1.00
METHANE	Jetanizer™-FID	1.48	8910063	0.67
CARBON DIOXIDE	Jetanizer™-FID	1.90	39994197	0.17
ETHYLENE	Jetanizer™-FID	2.51	16664855	0.11
ACETYLENE	Jetanizer™-FID	2.90	11355536	1.01
ETHANE	Jetanizer™-FID	3.10	17121040	0.06

% RSD up to 1% with acetylene eluting to Jetanizer FID

Limits of Detection and Repeatability

ANALYTE	DETECTOR	RETENTION TIME (MIN)	AVERAGE PEAK AREA	RSD% (N=3)
CARBON MONOXIDE	Jetanizer™-FID	1.39	7844457	0.27
METHANE	Jetanizer™-FID	1.48	8370707	0.25
CARBON DIOXIDE	Jetanizer™-FID	1.89	39239009	0.20
ETHYLENE	Jetanizer™-FID	2.50	16478246	0.29
ETHANE	Jetanizer™-FID	2.99	16389142	0.14

% RSD <0.3% with acetylene cut to vent

Analysis Expansion

- Addition of H₂, O₂, or N₂
- High concentrations of CO and CH₄

Summary

- Gas Chromatography offers a fast, user-friendly analysis of Greenhouse Gas
- Highly repeatable and sensitive analysis
 - < 1 ppm LOD for all GHG analytes</p>
 - < 1.01 % RSD
- Small sample size required
 - 1 mL of sample for each analysis
- Flexible sample introduction for simple sample handling
 - Exetainer vials, Tedlar Bags, Manual syringe injection, Headspace vials
- Expandable to inorganic gas analysis

Questions?

- Allison Mason
 - <u>ammason@shimadzu.com</u>
 - 410-910-0912