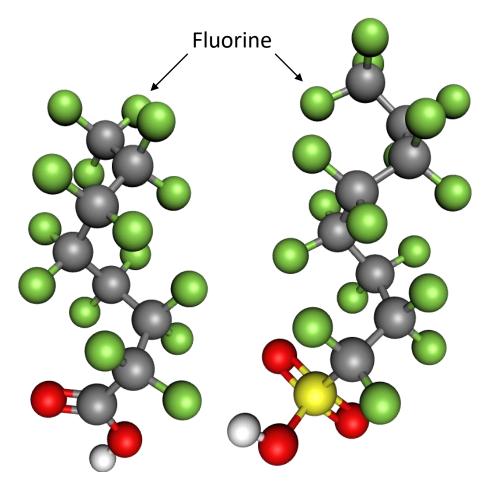


EPA's Strategy for Addressing PFAS: Expanding the Scientific Foundation for Action


Susan Burden, Ph.D.

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

Per- and Polyfluoroalkyl Substances (PFAS)

Perfluorooctanoic acid (PFOA)

Perfluorooctanesulfonic acid (PFOS)

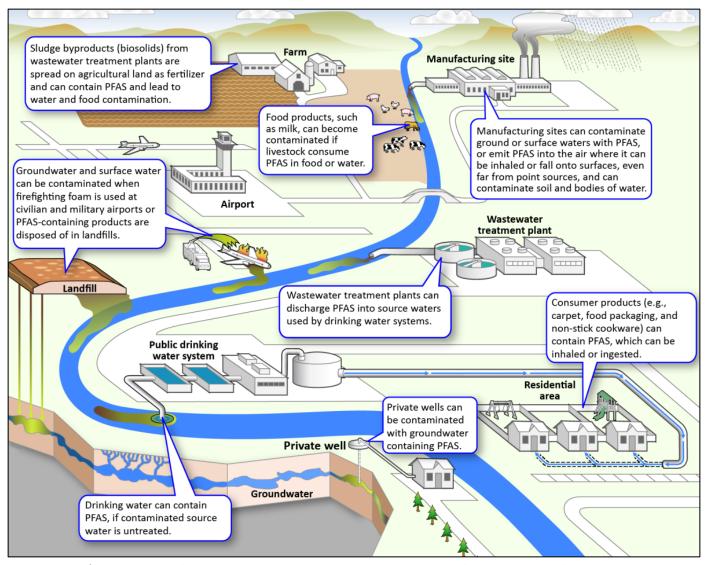
A large class of synthetic chemicals

- Features chains of carbon atoms surrounded by fluorine atoms
- Wide variety of chemical structures, from single molecules to polymers


Used in homes, businesses and industry for decades

- Have been detected in soil, water and air samples
- Most people have been exposed to PFAS

Some PFAS are known to be PBT


- P = Persistent in the environment
- B = Bioaccumulative in organisms
- T = Toxic at relatively low levels (ppt)

More than PFOA and PFOS

Links to EPA's CompTox Chemicals Dashboard

Sources of PFAS in the Environment

- Direct release into the environment
 - Use of aqueous film-forming foam (AFFF) in training and emergency response
 - Release from industrial facility
- Landfills and leachates from PFAS-containing products
- Wastewater treatment discharge and biosolids

Source: GAO | Technologies for PFAS Assessment, Detection and Treatment (GAO-22-105088)

EPA PFAS STRATEGIC ROADMAP

EPA Council on PFAS

- Established in April 2021 by
 EPA Administrator Michael Regan
- Charged with developing a whole-of-EPA strategy to protect public health and the environment from PFAS
- Released EPA's <u>PFAS Strategic</u> <u>Roadmap</u> in October 2021
- The roadmap:
 - Describes EPA's principles and goals for addressing PFAS
 - Identifies concrete actions EPA is taking to address PFAS

EPA PFAS Strategic Roadmap: Principles

- PFAS contamination presents unique challenges
- EPA's approach to addressing PFAS is centered around the following principles:
 - Consider the lifecycle of PFAS
 - Get upstream of the problem
 - Hold polluters accountable
 - Ensure science-based decision making
 - Prioritize protection of disadvantaged communities

EPA PFAS Strategic Roadmap: Goals

RESEARCH

Invest in research, development and innovation to increase understanding of:

- PFAS exposures;
- Human health and ecological effects; and
- Effective interventions.

RESTRICT

Pursue a comprehensive approach to proactively prevent PFAS from entering air, land and water at levels that can adversely impact human health and the environment.

REMEDIATE

Broaden and accelerate the cleanup of PFAS contamination to protect human health and ecological systems.

Key Actions: Ensuring Chemical Safety

Deepen our understanding of PFAS categories through the National PFAS Testing Strategy – released October 2021

RESEARCH

RESTRICT

Strengthen EPA oversight over both new and existing PFAS

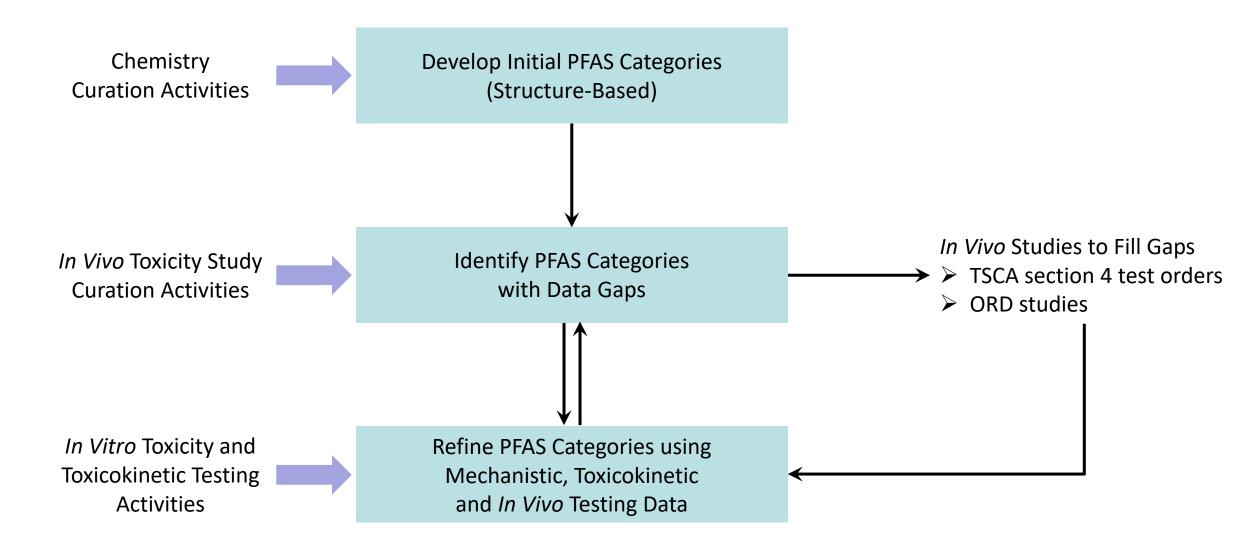
RESTRICT

- summer 2022 and ongoing

Collect data and improve reporting of how PFAS are used and released – winter 2022

RESEARCH

RESTRICT


Establish a PFAS voluntary stewardship program - ongoing

RESTRICT

Reduce PFAS in federal procurement – *ongoing*

RESTRICT

PFAS Categories for Toxicity Testing

Key Actions: Protecting Our Water

Set enforceable limits for PFOA and PFOS in drinking water – proposed rule fall 2022

RESTRICT

Improve PFAS drinking water data and information through monitoring and health advisories — ongoing

RESEARCH

Develop technology-based PFAS limits for industrial dischargers – *ongoing*

RESTRICT

Address PFAS in Clean Water Act permitting, analytical methods, water quality criteria, fish advisories — ongoing

RESEARCH

RESTRICT

Evaluate risks of PFAS in biosolids – 2024

RESEARCH

Environmental Measurement

Reliable analytical methods are needed to identify and measure PFAS in air, water and land

Recent Accomplishments

Air

OTM-45 (air emissions; 2021)

Water

- <u>EPA Method 533</u> (drinking water; 2019)
- <u>EPA Method 537.1</u> (drinking water; 2018/2020)
- <u>SW-846: Method 8327</u> (wastewater, groundwater, surface water; 2021)
- <u>Draft Method 1633</u> (water, solids, tissue; 2021)

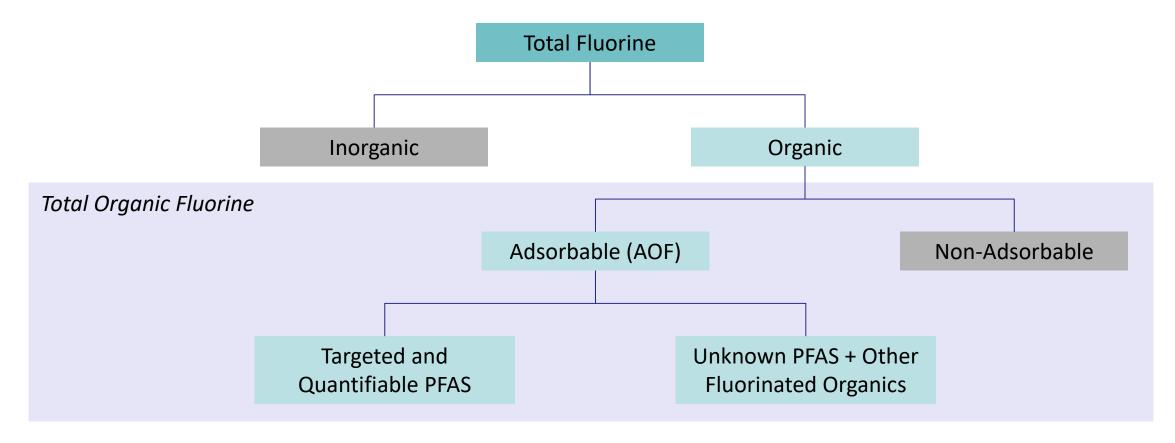
"Total PFAS"

<u>Draft Method 1621</u> (wastewater; 2022)

Current & Ongoing Efforts

Air

 Develop methods for additional PFAS in air emissions


Water / Solids / Tissue

- Support multi-laboratory validation of <u>Draft</u>
 Method 1633 and Draft Method 1621
- Initiate multi-laboratory validation of draft PFAS leaching methods

Other Methods

- Develop "total PFAS" methods
- Refine non-targeted analysis methods

"Total PFAS:" Adsorbable Organic Fluorine

- Targeted PFAS methods need commercially-available standards; thus, not all PFAS in samples may be detected
- "Total PFAS" methods may be useful in screening samples for PFAS

Key Actions: Cleaning Up Contamination and Addressing Air Emissions

Develop regulations to designate PFAS as CERCLA hazardous substances – proposed rule soon

REMEDIATE

Take regulatory action to tackle PFAS under RCRA – ongoing

RESTRICT REMEDIATE

Update guidance on PFAS destruction and disposal – *fall 2023*

RESEARCH RESTRICT

Build the technical foundation for potential Clean Air Act regulation – *ongoing*

RESEARCH RESTRICT

Destruction and Disposal

Data on end-of-life management approaches are needed to inform risk management decisions

Recent Accomplishments

Thermal Destruction

- PFAS Thermal Treatment Database (2022)
- Low temperature thermal treatment of gasphase fluorotelomer alcohols by calcium oxide (2021)

Innovative Destruction Approaches

- Developing innovative treatment technologies for PFAS-containing wastes (2022)
- <u>Supercritical water oxidation as an innovative</u> <u>technology for PFAS destruction</u> (2022)

Current & Ongoing Efforts

Thermal Destruction

- Evaluate destruction efficacy
- Identify products of incomplete combustion

Innovative Destruction Approaches

- Evaluate destruction efficacy of innovative approaches
- Identify products of incomplete destruction

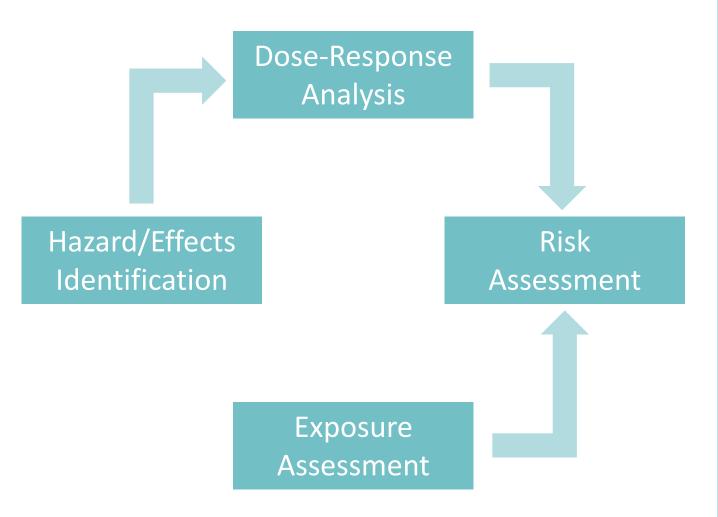
Landfills

Evaluate PFAS in landfill leachate

Key Actions: Research and Development

Develop and validate methods and approaches to detect and measure PFAS in the environment – ongoing

RESEARCH


Advance the science to assess human health and environmental risks from PFAS – ongoing

RESEARCH

Evaluate and develop technologies for reducing PFAS in the environment – *ongoing*

RESEARCH

Understanding PFAS Risk

Research Needs

- Human health toxicity and toxicokinetic studies
- Ecotoxicity and bioaccumulation studies
- Occurrence studies
- Fate and transport studies
- Exposure studies

Research Approaches

- Data curation
- Toxicity testing
- Toxicity assessments
- Modeling

17

Human Health Effects: Assessments

Toxicity values are needed to inform risk analysis, risk management decisions and risk communication

	PFAS	Chemical Formula	Toxicity Value?	
CARBOXYLIC ACIDS Increasing chain length	PFBA	C ₃ F ₇ COOH	<u>Draft</u>	Updates underway to inform drinking water regulation
	PFHxA	C ₅ F ₁₁ COOH	<u>Draft</u>	
	PFOA	C ₇ F ₁₅ COOH	<u>Yes</u> (2016)	
	PFNA	C ₈ F ₁₇ COOH	2023*	
	PFDA	C ₉ F ₁₉ COOH	2022*	
SULFONIC ACIDS	PFBS	C ₄ F ₉ SO ₂ OH	<u>Yes</u> (2021)	
Increasing chain length	PFOS	C ₈ F ₁₇ SO ₂ OH	<u>Yes</u> (2016)	
	PFHxS	C ₆ F ₁₃ SO ₂ OH	2023*	
GEN-X →	HFPO-DA	C ₃ F ₇ -O-C ₂ F ₄ COOH	<u>Yes</u> (2021)	
* Estimated timing for <u>draft</u> assessment				

Ecological Effects

Bioaccumulation and ecotoxicity data are needed to inform ecological hazard assessments and benchmark development

Recent Accomplishments

Bioaccumulation

- Evaluation of published bioconcentration and bioaccumulation factors (2021)
- Integrative computational approaches to inform relative bioaccumulation potential of PFAS across species (2021)

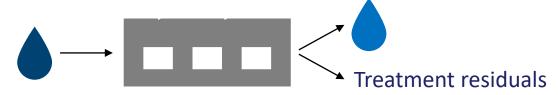
Ecotoxicity

- Understanding the dynamics of physiological changes, protein expression and PFAS in wildlife (2022)
- <u>Tissue-specific distribution of legacy and novel</u>
 PFAS in juvenile seabirds (2021)

Current & Ongoing Efforts

Bioaccumulation

 Evaluate and develop approaches and data (e.g., partitioning, metabolism) to predict bioaccumulation


Ecotoxicity

- Update the <u>ECOTOX Knowledgebase</u>
- Use new approach methods (NAMs) to prioritize and categorize data-poor PFAS for further toxicity testing
- Develop approaches to support predicting effects of untested PFAS in different species (e.g., adverse outcome pathways)

Reducing PFAS in the Environment

Water Treatment

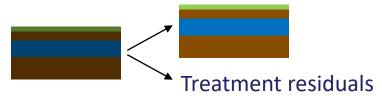
Goal: Remove or reduce PFAS in drinking water and wastewater

Example Technologies

Drinking water – Granular activated carbon (GAC), ion exchange resin, reverse osmosis (RO)

Wastewater – Sedimentation/partitioning, GAC

Recent Accomplishments


Modeling PFAS removal using GAC for full-scale system design (2022)

Ongoing Efforts

- Update the <u>Drinking Water Treatability Database</u>
- Determine fate and transformation in conventional wastewater treatment

Site Remediation

Goal: Remove or reduce PFAS at contaminated sites (e.g., in soil, sediment, groundwater)

Example Technologies

Soil excavation, stabilization, pump and treat

Recent Accomplishments

- Remediation and mineralization processes for PFAS in water: A review (2021)
- <u>Investigation of an immobilization process for PFAS</u>
 <u>contaminated soils</u> (2021)

Ongoing Efforts

Identify approaches for site characterization and remediation

Cross-Program Actions

ENGAGE

Engage directly with affected communities in every EPA region to hear how PFAS contamination impacts lives and livelihoods.

ENFORCE

Use enforcement tools to identify and address PFAS releases, limit future releases, require actions by responsible parties, and address existing contamination.

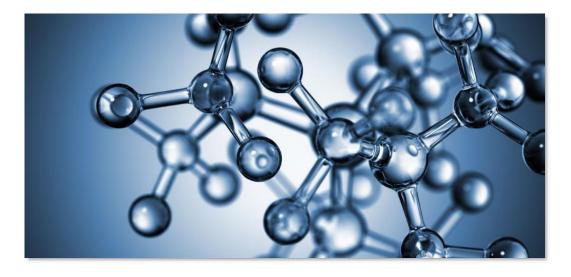
COMMUNICATE

Report on EPA's progress and educate the public about PFAS risks.

COORDINATE

Coordinate with federal partners on policy strategies.

Open funding opportunity under **SBIR** (until Aug. 23): Sensors to detect high-priority contaminants of emerging concern (including PFAS)


ENVIRONMENTAL INNOVATION

Susan Burden, Ph.D.

Executive Lead for PEAS Office of Research and Development U.S. Environmental Protection Agency

burden.susan@epa.gov (202) 564-6308

EPA PFAS Activities – <u>www.epa.gov/pfas</u> **PFAS Research and Development** – www.epa.gov/chemicalresearch/research-and-polyfluoroalkyl-substances-pfas