

Highly Sensitive Detection of Geosmin and MIB by Purge and Trap with GC/MS

Cynthia Elmore & Stephanie A. Smith, Ph.D.* Xylem Lab Solutions, North America

a **xylem** brand

Agenda

- Part I: Harmful Algal Blooms and Geosmin/MIB
- Part II: OI Analytical Geosmin/MIB Method via EPA Method 524.3

Harmful Algal Blooms and Geosmin/MIB

a xylem brand

100,000 Miles of rivers & streams 2.5 million acres of surface water 800 miles² of bays and estuaries

https://www.epa.gov/nutrientpollution/where-nutrient-pollution-occurs, accessed June 2022

Fertilizers

Animal Manure

Nutrients and HABs

- P is the limiting nutrient for algae in most freshwaters.
- N further stimulates growth, toxin production.
- Eutrophic and hypereutrophic conditions lead to Harmful Algal Blooms (HABs).

HAB Impacts

• Environmental

marine mortality events) are now

associated with HABs.

Between 2007 and 2011, Departments of Health/Environment from 13 states reported 67 cases of dog poisoning related to HAB toxins.

HABs at YSI

HAB Impacts

- Environmental
- Economic

HAB Impacts

- Environmental
- Economic
- Drinking Water

2 Methylisobornel (MIB)

Geosmin

HABs at YSI

What are Geosmin & MIB?

- Volatile organic compounds (VOCs)
- Non-toxic
- Made by microbes
 - Actinomycetes/Streptomycetes
 - Blue-green algae (cyanobacteria)

What are Geosmin & MIB?

HABs and Geosmin/MIB

- Humans can detect as low as 5 ppt
- "Early warning sign" of an HAB
- Co-occurred with toxins ≥90% of the time in one study*

*Graham JL, et al. Environ Sci Technol. 2010;44(19):7361–7368. doi: 10.1021/es1008938.

What are Geosmin & MIB?

HABs and Geosmin/MIB

Drinking Water Treatment

- Carbon
- Advanced Oxidation
- Breakthroughs common

AOP Article in WWD

What are Geosmin & MIB?

HABs and Geosmin/MIB

Drinking Water Treatment

HAB Strategy for Geosmin/MIB

- Source Water Monitoring for HABs
- Mitigate Nutrients in Source Water
- Lab-based Monitoring for Geosmin/MIB

Part 1 Summary

- Eutrophication leads to HABs, and HABs lead to taste and odor in drinking water
- Geosmin/MIB are sensed by humans in the low ppt range
- Breakthroughs to finished water are common
- An HAB strategy should include ppt-range detection of Geosmin/MIB in finished water

OI Analytical Geosmin/MIB Method via EPA Method 524.3

a xylem brand

Detection Methods*

- Pre-conditioning \rightarrow Extraction \rightarrow Separation \rightarrow Detection
- Sample Concentration (SPME, P&T...)
- GC/MS with selective ion monitoring

*Bristow, R.L., et al. TrAC. 2019;110:233-248 https://doi.org/10.1016/j.trac.2018.10.032.

Detection Methods

EPA Method 524.3

- Purgeable Organics in finished drinking water by GC/MS
- Over 70 VOCs listed in method, but neither geosmin or MIB
- Every calibration curve point must meet a %recovery target

Detection Methods

EPA Method 524.3

Our Goals

- \leq 1 ppt in finished water is the target
- No salting/pre-treatment
- Extraction, concentration, sample intro all in one step

Detection Methods

EPA Method 524.3

Our Goals

Our Approach

- 4100 Autosampler
- 4760 Eclipse P&T
- Agilent 7890A/5975C
 GC/MS

OI Analytical Method: Calibration Acceptance & Validation

Compound	1 p	opt	100 ppt		
Compound	Std	%Rec	Std	%Rec	
1,2-DCB-d4 (SS)	9.81	98.1	10.16	102	
2-MIB	1.03	103	97.2	97.2	
Geosmin	1.13	113	98.7	98.7	

- 1,2-Dichlorobenzene-d4 is the surrogate standard, at 10 ppt
- Concentrations: 1, 2, 5, 10, 25, 50, 75 and 100 ppt
- Low level %Rec must be +/- 50%, all other levels must be +/- 30%

OI Analytical Method: Minimum Reporting Level (MRL)

Compound	Mean	Std. Dev.	HR _{PIR}	Upper PIR Limit (%)	Lower PIR Limit (%)
1,2-DCB-d4 (SS)	9.69	0.137	0.54	102	91.5
2-MIB	1.13	0.060	0.24	137	89.8
Geosmin	1.05	0.061	0.24	129	80.9

- HR Half Range Prediction of Interval Results
- Upper PIR limit must be ≤150% recovery (true value is 1 ppt)
- Lower PIR Limit must be ≥50% recovery (true value is 1 ppt)

OI Analytical Method: Initial Demonstration of Capability

Compound	Precision (%RSD)	Accuracy (%)	
1,2-DCB-d4 (SS)	1.92	98.4	
2-MIB	3.73	109	
Geosmin	3.46	106	

- The 1,2-DCB-d4 surrogate standard was at 10 ppt
- Target compounds at 25 ppt
- %RSD must be ≤ 20% for precision for all
- Accuracy (%) must be ± 20%
 - (80-120% recovery)

Geosmin/MIB Method

OI Analytical Method: Considerations

- Method 524.3 is for *finished* drinking water
 - Haven't tested this method with source water
- Clean sample pathway, clean MS source
- Recommend minimum of three vials for sample testing
- Use same care you would use for all VOC sample collection

25

Part 2 Summary

- Met Our Primary Goals
 - ≤ 1 ppt MRL
 - No pre-treatment of samples
 - Extraction, concentration, sample intro in one, hands-free step
- Additional Benefits:
 - Common setup found in many environmental labs
 - Didn't need salt
 - Used lower sample volume than some

Questions?

