
Haloacetic Acids Analysis: Evaluation of alternatives for their improved analysis

Ruth Marfil-Vega, PhD

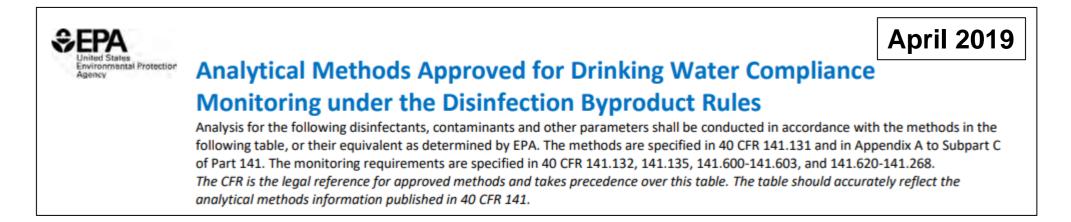
Senior Market Manager - Environmental

🕀 SHIMADZU

In today's presentation

- 1. Why HAAs?
- 2. Approved methods
- 3. Alternatives
- 4. Conclusions
- 5. Q&A

Demands for this analysis are only going to become more challenging:


✓ Updated regulation

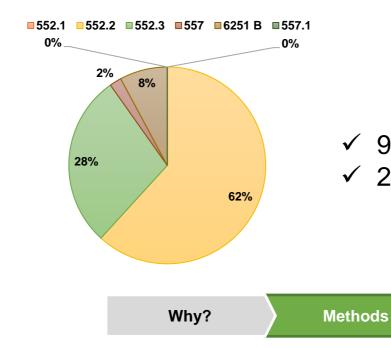
✓ New demands for process control (water reclamation)

✓ Improved Health & Safety, and waste management measurements

✓ Streamlined operations

Approved methods HAA5

Method	Organization	Date	Analytical Approach
552.1; 552.2; 552.3	EPA	1992, 1995, 2003	GC ECD
557	EPA	2009	IC-ESI-MS/MS
6251 B	SM	1995 – 2017	GC ECD
Thermo Fisher 557.1	Thermo Fisher	2017	2D IC with suppressed conductivity detector


https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100WD1L.txt

Why? Methods Alternatives Conclusions Q&A

How many labs are accredited?

Method	Organization	Date	# of labs
552.1; 552.2; 552.3	EPA	1992, 1995, 2003	92
557	EPA	2009	2
6251 B	SM	1995 – 2017	8
Thermo Fisher 557.1	Thermo Fisher	2017	0

Source of information: The NELAC Institute (July 2022)

✓ 98% of the labs accredited under NELAC use GC/ECD
✓ 2% of the labs accredited under NELAC use IC-MS/MS

Q&A

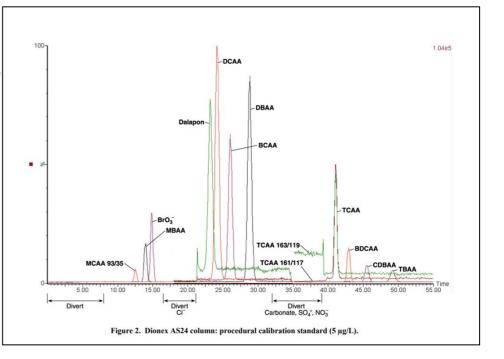
Let's break down the steps from each method

GC/EC	D Sample [*] Analysis - Step	Description
	Preparation	Ether extraction at acidic pH Derivatization in acidic methanol (2 h) Extract drying through sodium sulfate Extract neutraliztion
-	Analysis	Analyze the batch in GC-ECD after confirming status of instrument. Analyze samples twice, in primary and confirmation columns

Time consuming Multiple opportunities for errors High risk Limited number of samples per day

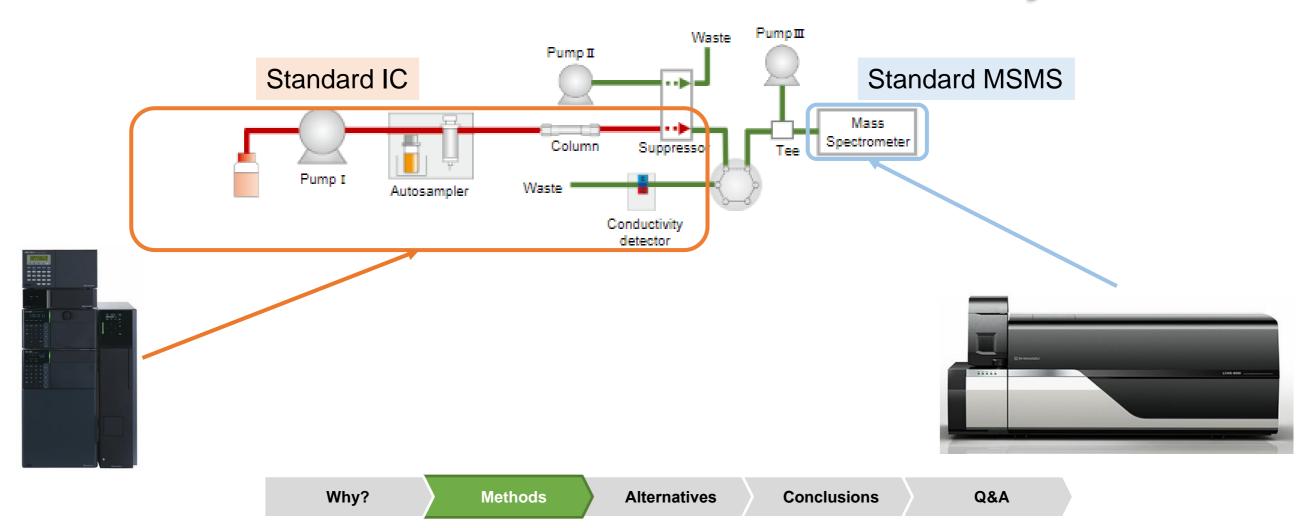
Find Shimadzu's solutions for HAAs analysis by GC-ECD

Let's break down the steps from each method


-MS/MS	
Sample [*] Analysis - Step	Description
Preparation	Add preservatives to QC samples (all other samples: add preservative at collection). Add appropriate amount of internal standard.
Analysis	Analyze the batch in IC-MS/MS after confirming status of instrument.

* Samples, including QC samples, must be maintained at ≤6 ℃ from collection until injection in IC-MS/MS

Run time from EPA 557: 50 min


Data do NOT acquire with Shimadzu's instrument

Let's break down the steps from each method

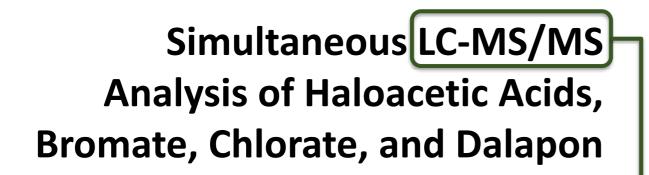
IC-MS/MS

- Additional pumps and valves needed for interfacing IC with MS/MS to:
- Divert mobile phase (high anions concentration)
- Add organic solvent

Complex

Method Comparison

Parameter	GC/ECD	IC-MS/MS
Updated Regulation		
New Process Control		
Health & Safety	X	
Streamlined Operations	×	\checkmark
Instrument	Common	Uncommon; complex
CAPEX	$\Box \Box \Box$	I to II
OPEX	×	


Method Comparison

Devenueter			
Parameter	GC/ECD	IC-MS/MS	Alternative?
Updated Regulation	\checkmark		
New Process Control	\checkmark		
Health & Safety	X		
Streamlined Operations	×	\checkmark	٥٢
Instrument	Common	Uncommon; complex	
CAPEX	$\Box \Box \Box$		
OPEX	×		

Alternative Method

Currently approved for analysis of regulated HAAs in Japan Viable option for monitoring in the European Union Routinely used in R&D

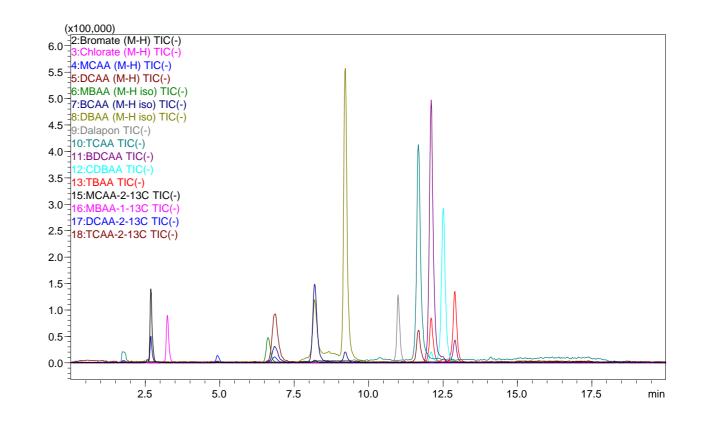
Alternative Method

Simultaneous LC-MS/MS Analysis of Haloacetic Acids, Bromate, Chlorate, and Dalapon

Does it meet the method flexibility from EPA 557?

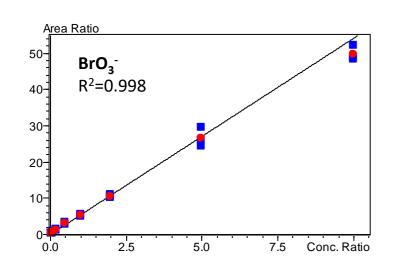
1.7 METHOD FLEXIBILITY – The laboratory is permitted to select IC columns, eluent compositions, eluent suppression techniques, and ESI-MS/MS conditions different from those utilized to develop the method. However, the basic chromatographic elements of the method must be retained. In order to avoid the effects of matrix suppression, the method analytes must be substantially resolved chromatographically from common anions in drinking water. Samples must be analyzed by direct injection. Filtering and pretreatment by use of solid phase extraction are not permitted. At a minimum, the four internal standards prescribed in this method must be used. Changes may not be made to sample collection and preservation (Sect. 8) or to the quality control (QC) requirements (Sect. 9). Method

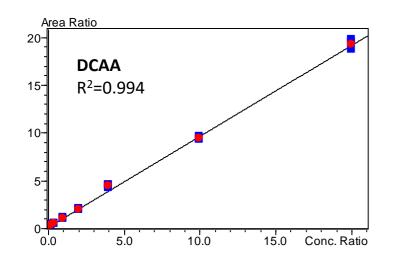
modifications should be considered only to improve method performance. Modifications that are introduced in the interest of reducing cost or sample processing time, but result in poorer method performance, may not be used. In all cases where method modifications are proposed, the analyst must perform the procedures outlined in the Initial Demonstration of Capability (IDC, Sect. 9.2), verify that all QC acceptance criteria in this method (Tables 11 and 12) are met, and verify method performance in a real sample matrix (Sect. 9.4).


NOTE: Single quadrupole instruments are not permitted.

TARGETS
BrO ₃ -
CIO3-
MCAA
DCAA
MBAA
BCAA
DBAA
Dalapon
TCAA
BDCAA
CDBAA
TBAA

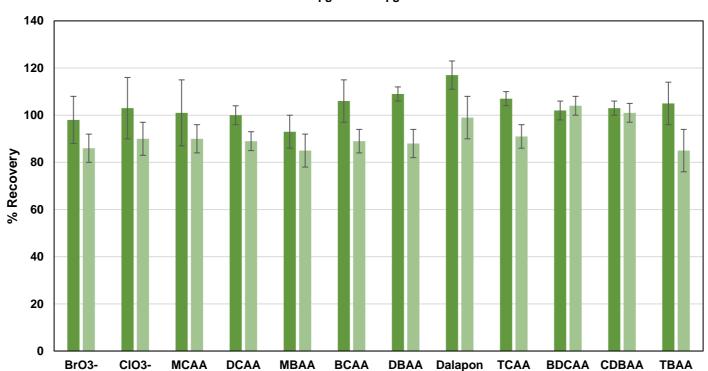
TARGETS	EPA 557	
BrO ₃ -	INTERNAL STANDARDS	
CIO ₃ -	MCAA-2- ¹³ C	
MCAA	MBAA-1- ¹³ C	
	DCAA-2- ¹³ C	
DCAA	TCAA-2- ¹³ C	
MBAA		
BCAA		
DBAA		
Dalapon	Sample [*] Analysis - Step	Description
TCAA	EPA 557	Add preservatives to QC samples (all other
BDCAA	Preparation	samples: add preservative at collection).
CDBAA		Add appropriate amount of internal standard.
TBAA	Analysis	Analyze the batch in LC-MS/MS after confirming
IDAA	Analysis	status of instrument.
EPA 5	57 Samples, including QC samples, must be maintaine	ed at ≤ 6 °C from collection until injection in LC-MS/MS
	Why? Methods Alternatives	Conclusions Q&A


TARGETS	EPA 557	Simple
BrO ₃ -	INTERNAL STANDARDS	onnpre
CIO ₃ -	MCAA-2- ¹³ C	
MCAA	MBAA-1- ¹³ C	
DCAA	DCAA-2- ¹³ C	
	TCAA-2- ¹³ C	
MBAA		
BCAA		
DBAA		
Dalapon	Sample [*] Analysis - Step	Description
Dalapon TCAA		
	Sample [*] Analysis - Step EPA 557 Preparation	Description Add preservatives to QC samples (all other samples: add preservative at collection).
TCAA BDCAA	EPA 557	Add preservatives to QC samples (all other
TCAA BDCAA CDBAA	EPA 557 Preparation	Add preservatives to QC samples (all other samples: add preservative at collection). Add appropriate amount of internal standard.
TCAA BDCAA	EPA 557	Add preservatives to QC samples (all other samples: add preservative at collection).
TCAA BDCAA CDBAA	EPA 557 Preparation Analysis	Add preservatives to QC samples (all other samples: add preservative at collection). Add appropriate amount of internal standard. Analyze the batch in LC-MS/MS after confirming
TCAA BDCAA CDBAA TBAA	EPA 557 Preparation Analysis	Add preservatives to QC samples (all other samples: add preservative at collection). Add appropriate amount of internal standard. Analyze the batch in LC-MS/MS after confirming status of instrument.


Nexera HPLC Conditions				
Mobile Phase A	0.05% formic acid in H2O			
Mobile Phase B	0.3% formic acid in 80:20 MeOH: H_2O			
Flow Rate	0.	0.5 mL/min		
Gradient	Time (min) % B 0-2 1 6 40 7 60 12 100 16 100 16.1 1 20 Stop			
Column	Capcell Pak C18 MGIII 150x3mm, 3 µm			
Column Oven Temperature		25°C		
Injection Volume		30 µL		
LCMS-8060NX				
Nebulizing Gas	2 L/min			
Drying Gas Flow	20 L/min			
Interface Temperature	100°C			
Heat Block Temperature	ure 75°C			

Sample to sample cycle time: 20 min 2 MRMs used for each compound

Synthetic sample matrix with extremely high ionic strength also analyzed to evaluate matrix effect



Compound	Linear Range (ug/L)	Equation	R ²
BrO ₃ -	0.2 - 100	y = 5.41x + 0.05	0.996
CIO ₃ -	1 – 100	y = 14.74x + 0.18	0.999
MCAA	1 – 100	y = 1.90x + 0.05	0.995
DCAA	1 – 100	y = 0.95x + 0.15	0.994
MBAA	1 – 100	y = 2.97x + 0.18	0.994
BCAA	0.5 – 100	y = 0.86x + 0.04	0.997
DBAA	0.2 – 100	y = 3.29x + 0.06	0.997
Dalapon	1 – 100	y = 0.45x - 0.00	0.992
TCAA	0.5 – 100	y = 5.10x + 0.08	0.998
BDCAA	0.1 – 100	y = 6.75x + 0.01	0.998
CDBAA	0.1 – 100	y = 4.34x + 0.01	0.998
TBAA	0.5 - 100	y = 1.65x - 0.00	0.998

Calibration curve:

- acquired in LCMS grade water; each standard analyzed in triplicates
- Linear fitting with a weighting of 1/C²
- R² >0.99 for all compounds
- Accuracies for calibration points within 80-120%

Laboratory fortified blank (LFB): LCMS grade water with100 mg/L ammonium chloride LFB spiked with 5 µg/L and 100 µg/L analyzed with replication (n=6) %Recovery for all compounds: 85-117%

Why? Methods Alternatives Conclusions Q&A	
---	--

%Recovery in LFB

■5 µg/L ■100 µg/L

Compound	DI Water	Tap Water A	Tap Water B	Tap Water C	River	Stream
BrO ₃ -	ND	ND	ND	ND	ND	ND
CIO ₃ -	ND	250 ± 20	220 ± 30	400 ± 50	16.1 ± 0.3	ND
MCAA	ND	ND	ND	ND	ND	ND
DCAA	ND	9.8 ± 0.7	ND	ND	ND	ND
MBAA	ND	ND	ND	ND	ND	ND
BCAA	ND	1.2 ± 0.1	ND	ND	ND	ND
DBAA	ND	ND	ND	ND	ND	ND
Dalapon	ND	1.5 ± 0.2	3.2 ± 0.8	ND	ND	ND
TCAA	ND	19 ± 1.0	15.5 ± 0.3	<loq< td=""><td><loq< td=""><td><loq< td=""></loq<></td></loq<></td></loq<>	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
BDCAA	ND	3.6 ± 0.1	1.6 ± 0.1	0.2 ± 0.0	ND	ND
CDBAA	<loq< td=""><td>0.4 ± 0.1</td><td><loq< td=""><td><loq< td=""><td>ND</td><td>ND</td></loq<></td></loq<></td></loq<>	0.4 ± 0.1	<loq< td=""><td><loq< td=""><td>ND</td><td>ND</td></loq<></td></loq<>	<loq< td=""><td>ND</td><td>ND</td></loq<>	ND	ND
TBAA	ND	ND	ND	ND	ND	ND
HAA9	0	34.3	17.2	0.2	0	0

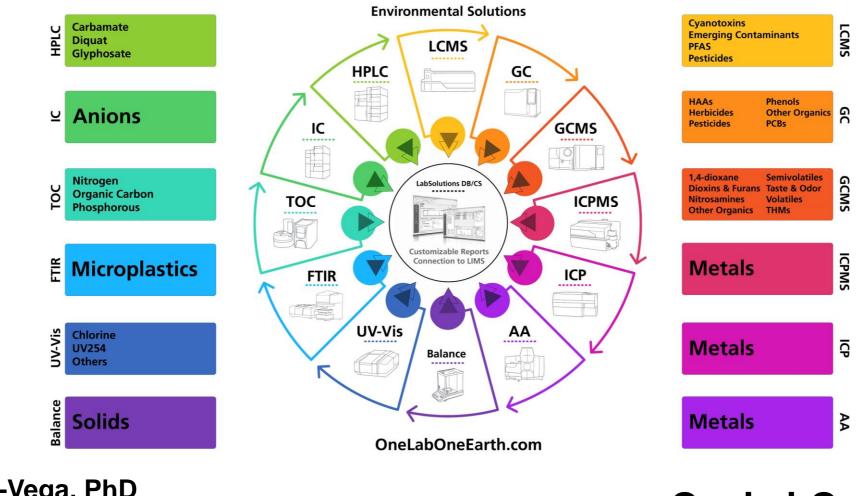
Unspiked samples from different locations analyzed in triplicates Concentration in μ g/L (mean±standard dev) shown in table

Why? Methods Alternatives Conclusions Q&A	Why?	Methods	Alternatives	Conclusions	Q&A
---	------	---------	--------------	-------------	-----

Method Comparison

Parameter	GC/ECD	IC-MS/MS	LC-MS/MS
Updated Regulation			VV to VVV
New Process Control			
Health & Safety	×		
Streamlined Operations	×		
Instrument	Common	Uncommon; complex	(Less) uncommon
CAPEX	$\Box \Box \Box$	✓ to ✓✓	
OPEX	×	v to v	✓ to ✓

🕀 SHIMADZU


Conclusions

- ✓ GC-ECD based method is still the most commonly run for HAAS analysis in accredited laboratories
- ✓ IC based method is available, although with limited implementation in routine labs
- ✓ LC-MS/MS based method is suitable for the analysis and present multiple advantages

Parameter	GC/ECD	IC-MS/MS	LC-MS/MS
Updated Regulation		\checkmark	VV to VVV
New Process Control			
Health & Safety	×		$\mathbf{\nabla }\mathbf{\nabla }$
Streamlined Operations	×	\square	
Instrument	Common	Uncommon; complex	(Less) uncommon
CAPEX		I to II	I to II
OPEX	X		$\overline{\mathbf{\nabla}}$

Why? Methods A	ernatives Conclusions Q&A
----------------	---------------------------

Q&A

www.OneLabOneEarth.com

Q&A

Ruth Marfil-Vega, PhD <u>rmmarfilvega@shimadzu.com</u>

Why? Methods Altern	atives Conclusions
---------------------	--------------------