The progress in the development of official methods for PFAS analysis using SPE and HPLC-MS/MS

NATIONAL ENVIRONMENTAL MONITORING CONFERENCE 2022

Dr. Achim Leitzke, 29 July 2022

MACHEREY-NAGEL

www.mn-net.com

Agenda

Introduction

Current solutions

Method Comparison

Summary

Properties – Daily use – Distribution of PFAS in the environment-examples

- Health Concerns

Properties and examples of PFAS

- ~ 4730 compounds known according to OECD
- All are nonnatural but man-made (used since the 1940s)
- Carbon chain: hydrogen is substituted by fluorine
- Structure: hydrophobic, lipophobic chain
 - + hydrophilic "head"
- \rightarrow tensid-like \rightarrow water-, dirt- and fat-repellent (non-sticky)

Perfluorooctanoic acid

Per- and polyfluoroalkyl substances (PFAS)

N 6

Introduction

Appearance/daily use

- Fire-fighting foam
- Fiber coating
- Textile coating, e.g. seat covers, carpets, outdoor clothing
- Cookware
- Paper finishing
- Food packaging, e.g. pizza cartons, paper cups
- Building material, e.g. water resistant lacquer

Distribution of PFAS in the environment-examples

Health Concerns of PFAS

- Affects growth, learning, behavior
- Endocrine interference
- Increase cholesterol levels
- Affect the immune system
- Increase the risk of cancer
- Infertility

PFAS valuation in drinking water

US EPA

- Office of water (2022): PFBS 0.01 μg/L, HFPO-DA 2 μg/L
- Regions (2022): PFOA 0.060 μg/L, PFOS 0,040 μg/L, PFOS-K 0.040μg/l, PFNA 0.059 μg/L, PFBA 6.0 μg/L, PFHxS 0.39 μg/L, HFPO-DA 0.06 μg/L

European DIRECTIVE (EU) 2020/2184

- PFAS Total: 0.5 µg/L (totality of all per- and polyfluoroalkyl substances)
- SUM of PFAS: 0.1 µg/L (20 substances)

Guidelines – Product solutions

PFAS Guidelines – Landmarks

MN 11

PFAS Guidelines – Method facts

PFAS Guidelines – Method facts

Hydrophobic polystyrene-divenylbenzene copolymer – CHROMABOND[®] HR-X

- SDVB polymer
 - Specific surface 1000 m²/g
 - RP capacity 390 mg/g
- required for good recovery and low detection limits
- Method is not sufficient for short-chain PFAS

CHROMABC	ND [®] HR-X	
Technical data		
Hydrophobic polys SPE mode: Interactions: Particle shape: pH stability: Particle size:	tyrene-divinylbenzene copolymer (PS/DVB) Reversed phase Hydrophobic and n–n Spherical 1–14 85 µm and 45 µm	
Pore size: Specific surface:	55–60 Å 1000 m²/g	
RP capacity:	390 mg/g (cat eine in water)	Good to know
Recommended a	application	Nexus
Pharmaceutical	s/active ingredients from tablets, creams and water	ENVI-Chrom P
 Drugs and pharmaceuticals from urine, blood, serum and plasma 		 Bakerbond H₂O-phobic DVB
Trace analysis of pesticides, berbicides, phenols, PAH and PCBs from water		 Strata[™]-X

Recommended for EPA Method 537, and EPA Method 537.1!

Weak anion exchanger – CHROMABOND[®] HR-XAW

- Weak anion exchanger (WAX)
 - mixed-mode polymeric sorbent
 - Particle size 45µm and 85 µm
 - pKa ~9
 - Exchange capacity > 0.5
- · required for good recovery and low detection limits
- Methods are fully sufficient for short-chain PFAS!

Data show that this works for EPA Method 533!

Weak anion exchanger – CHROMABOND[®] WAX

- Weak anion exchanger (WAX)
 - mixed-mode polymeric sorbent
 - Particle size 30 µm
 - pKa ~9
 - Exchange capacity > 1.0
 - Very low blind value Levels
- Good recovery rates PFOA (101.8 ± 8%), PFOS (92.7 ± 10.1%)
- Suitable for a wide range of PFAS

Fulfills EPA Method 533, EPA Draft Method 1633!

Scope of analytes

●DIN 38407-42	
●ISO 21675	•••••••••••••••••••••••••••••••••••••••
ASTM D8421-21	
 Draft Method 1633 	••••••••••
●EPA SW-846 Method 8327	
●EPA Method 533	•••••••••
●EPA Method 537.1	
●EPA Method 537	
	PFPra PFPa PFPa PFPa PFPa PFPa PFPa PFPa

Method differences

	EPA Method 537/537.1	EPA Method 533
SPE Column	SDVB SPE cartridges	weak anion exchange, mixed-mode polymeric sorbent, approximately 33 µm, pKa ~8
Conditioning	two steps (methanol, water)	three steps (methanol, aqueous phosphate buffer, water)
Elution	one step (methanol)	one step (NH $_3$ in methanol)

Method differences

	EPA Draft 1633	ISO 21675
Sample preparation	Setting a neutral pH value for sample	Setting a acidic pH value for sample
SPE Column	solid-phase extraction cartridges, pKa ~8	copolymer cartridges
Elution	one step (NH ₃ in methanol)	two steps (methanol, NH_3 in methanol)
Eluent exchange	No eluent exchange (neutralization and additional clean-up with GCB)	Evaporation to a final volume of e.g. 1 ml, redissolve in methanol/water

Method differences

• Direct injection: Only for simple matrices and higher MRL's

	EPA SW-846 Method 8327	ASTM D8421-21	ISO 21675
Sample preparation	No acid addition	Addition of acetic acid	No acid addition
Sample filtration	GxF, 0.2µm pore-size GHP	Polypropylene, 0.2 µm pore-size or equivalent	nylon or GxF, 1 µm to 10 µm pore-size

LC-MS/MS Analysis (EPA Method 533)

HPLC conditions	
DELAY Column	EC 50/2 NUCLEODUR® PFAS Delay (REF 760673.20)
Column	EC 100/2 NUCLEODUR [®] PFAS, 3 µm (REF 760666.20)
Eluent A	5 mM ammonium acetate in water
Eluent B	5 mM ammonium acetate in methanol
Gradient	Hold 40 % B for 1 min, in 8 min from 40 % B to 95 % B, hold 95 % B in 0.1 min to 40% B, hold 40 % B for 2.9 min
Flow rate	0.3 mL/min
Temperature	40 °C
Injection volume	1 µL

LC-MS/MS Analysis (EPA Method 533)

MS conditions (API 5500 SCIEX)	
Acquisition mode	SRM
Interface	ESI
Polarity	negative
Curtain Gas	30
Collision Gas	medium
Ionspray Voltage	-4500 V
Temperature	400 C
Ion Source Gas 1	50
Ion Source Gas 2	60
Detection Window	60 sec

LC-MS/MS Analysis (EPA Method 533)

https://www.mn-net.com/media/pdf/21/26/5a/ApplicationNote-02-2021-PFAS-EPA533.pdf

Recovery rates EPA 533

https://www.mn-net.com/media/pdf/21/26/5a/ApplicationNote-02-2021-PFAS-EPA533.pdf

Recovery rates EPA 537.1

https://www.mn-net.com/media/pdf/c0/db/6e/ApplicationNote-01-2021-PFAS-EPA537_1.pdf

Recovery rates EPA SW-846 Method 8327 (Direct injection)

https://www.mn-net.com/media/pdf/29/d7/f8/AN-05-2021-PFAS-EPA8327.pdf

Recovery rates ASTM D8421-21 (Direct injection)

Recovery sample A (concentration β = 100 ng/L)

Recovery sample B (concentration β = 400 ng/L)

Recovery rates EPA Draft Method 1633

■ SPE columns, CHROMABOND® WAX, 30 µm, 6 mL/150 mg

Water sample concentration $\beta = 5 \text{ ng/L}$

Recovery rates

- For most PFAS: 80 100 %
- Recovery rate and reproducibility decrease with length of PFAS-chain
- All presented products are very suitable for PFAS analysis

	AVERAGE GOOD
Exc.	ERY GOOD ELLENT

The development of PFAS analysis leads to several analytical challenges !

- Laboratory costs increase with higher requirements (lower MRL, MS-Sensitivity, PFAS standards, surrogates ...)
- Sample handling gets more complicated (adsorption effects, PFAS different chemical properties, low blind value Levels ...)
- Are such complex methods necessary for water monitoring?
 - Short chain PFAS have the highest impact on human health
 - Long chain PFAS make analysis costy

Scope of PFAS analyts for monitoring is expanding day by day!

- Many powerful methods have been developed in recent years
- Each Method shows strength and weaknesses
- Products for PFAS analysis get more and more optimized and specialized
- PFAS analysis is nothing for beginners

"Forever chemicals" will keep us busy!

Dr. Achim Leitzke I aleitzke@mn-net.com I +49-2421-969-160

MACHEREY-NAGEL

www.mn-net.com

Image credits

© Willyam (1), Aaron Amat (2, 3, 4, 5, 6, 7, 8, 9, 10), Jan Engel (2, 10, 11, 12, 13, 14, 15), Paulista (2, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30), Fotomerk (2, 9, 31, 32), nasir1164 (4), rimglow (9), Birgit Reitz-Hofmann (9), bymandesigns (9), Jakkapan (9), economica20 (9), Sly (9), Oliva Le Moal (29) - AdobeStock