COVID-19 Wastewater Surveillance:

Scalable Solutions for Detection in Low to High Throughput Workflows

MACHEREY-NAGEL Seminar: Case Studies in Wastewater Surveillance

Cynthia Ripoll, PhD August 2, 2022

MACHEREY-NAGEL

www.mn-net.com

MACHEREY-NAGEL - Bioanalysis

MACHEREY-NAGEL (MN) Mission

• Nucleic acid purification made easy, fast, affordable and reliable

Why test wastewater for SARS-CoV-2?

- Time and cost saving compared to testing individuals
- Early warning sign for new disease outbreaks
- Estimation of infection numbers in communities where not all individuals can be tested
- Wastewater testing can account for people with mild or no symptoms that are not tested
- Established method to non-invasively monitor norovirus, poliovirus, or antibiotic resistance

Detection of SARS-CoV-2 in wastewater samples

Challenges

Featured extraction kit: NucleoMag[®] DNA/RNA Water

Magnetic bead based viral RNA extraction

Wastewater testing methods

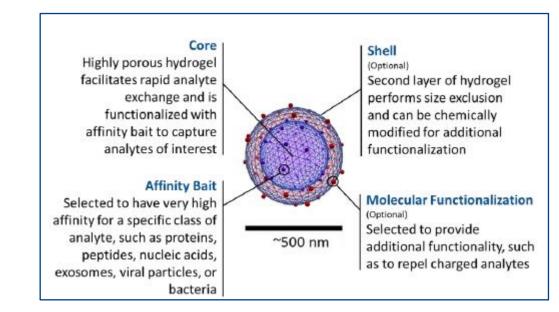
Magnetic Bead Technology

- NucleoMag[®] DNA/RNA Water
 - Manual or automated extraction
 - Scalable and flexible
 - Inhibitor removal technology

Compatible with multiple wastewater concentration techniques

- Technical notes posted on product webpage
- Today's focus: compatibility with technology from Ceres Nanosciences
 - Nanotrap[®] Magnetic Virus Particles

Ceres Nanosciences Technology


Nanotrap[®] Magnetic Virus Particles

- Affinity dye captures intact viral pathogens
- Hydrogel structure enables rapid viral binding
- Magnetically functionalized for easy isolation
- Apply lysis buffer from the MACHEREY-NAGEL NucleoMag[®] RNA/DNA Water kit and follow standard extraction protocol

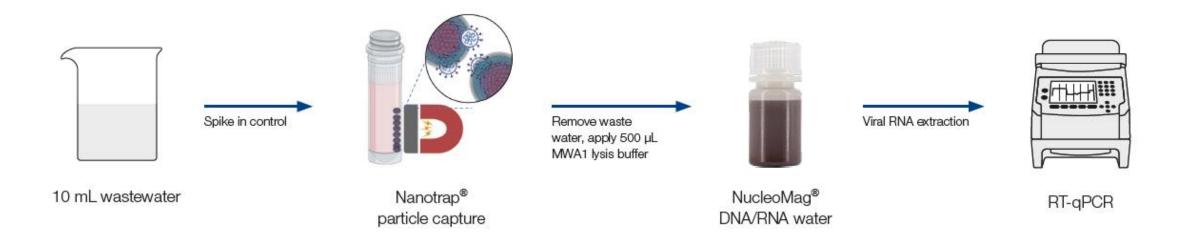
MACHEREY-NAGEL

SARS-CoV-2 extraction from wastewater concentrated with Nanotrap[®] Magnetic Virus Particles

Automatable concentration and purification of viral RNA from wastewater

Application Note: Nanotrap® + ddPCR Assay in Wastewater

Nanotrap[®] Particles are Compatible with RT-ddPCR Assay for SARS-CoV-2 Variant Detection in Wastewater

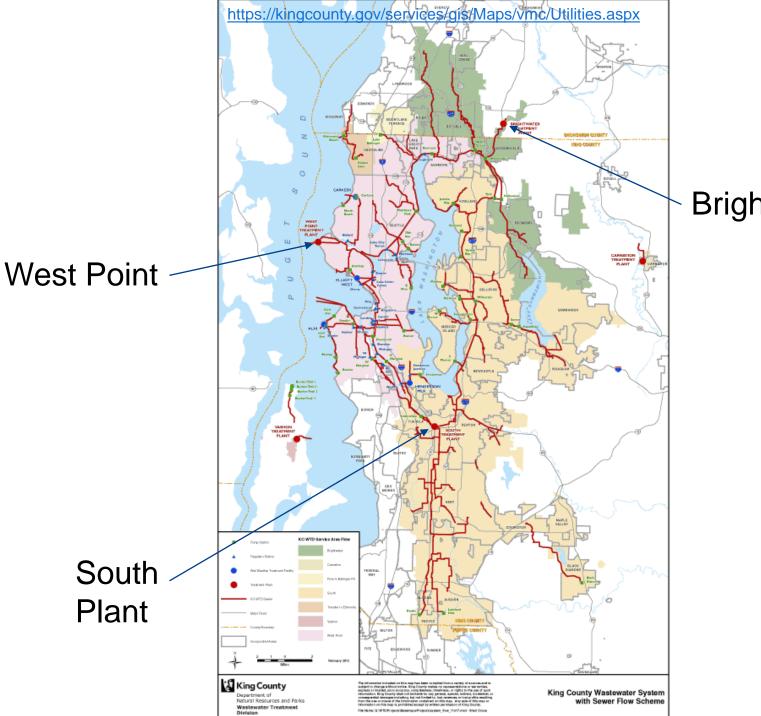

Workflow overview

Nanotrap[®] Magnetic Virus Particles

- Simple pathogen concentration and viral RNA extraction combined in one workflow
- Manual or automatable
 - Process up to 96 samples from raw sewage to PCR analysis in 4.5 hours on a KingFisher Apex

Method comparison – University of Washington

Data courtesy of:



Sarah Philo, PhD Candidate

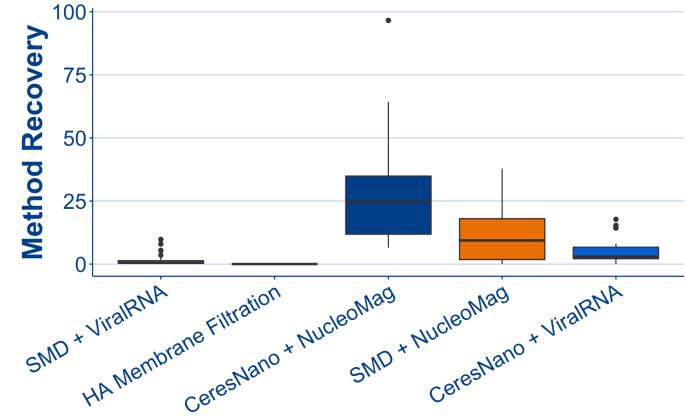
Scott Meschke, PhD

Wastewater Sampling Locations

- 1° influent wastewater collected weekly
- 3 King County WWTP locations

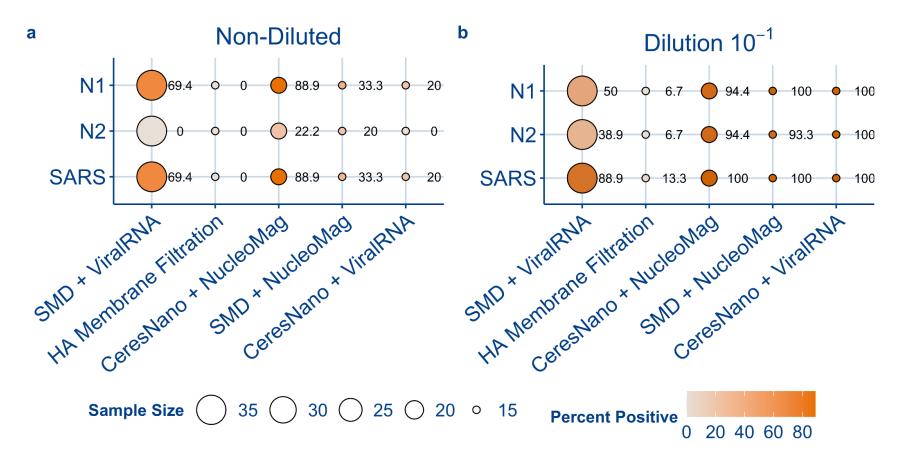
Brightwater

Comparison of concentration and extraction techniques



• Lab work carried out at the Environmental and Occupational Health Microbiology Lab at the University of Washington, Seattle

Concentration Method (n)	Extraction Kit	Volume Concentrated
Skimmed Milk Pellet Extraction (36)	QIAamp [®] Viral RNA Mini Kit	100 mL
Skimmed Milk Pellet Extraction (15)	NucleoMag [®] DNA/RNA Water	100 mL
Ceres Nanotrap [®] Particles (15)	QIAamp [®] Viral RNA Mini Kit	40 mL
Ceres Nanotrap [®] Particles (18)	NucleoMag [®] DNA/RNA Water	40 mL
HA Membrane Filtration (15)	NucleoMag [®] DNA/RNA Water	100 mL


- Seeded Human Coronavirus OC43 at 3.3 x 10⁴ TCID50/L to serve as recovery control
- NucleoMag[®] DNA/RNA Water kit results in higher OC43 recovery compared to other methods

Percent Positivity for SARS-CoV-2 Assays

- Higher SARS-CoV-2 detection in 10⁻¹ diluted reactions
- Ceres Nanotrap[®] particles + NucleoMag[®] DNA/RNA Water showed highest SARS-CoV-2 detection in undiluted reactions

- Pathogen concentration and RNA extraction protocols chosen highly affects OC43 recovery efficiency and SARS-CoV-2 detection
- Need to use dilutions to assess performance
 - Particularly if switching to a new concentration or RNA extraction protocol
- Combination of Nanotrap[®] Magnetic Virus Particles from Ceres Nanosciences and the NucleoMag[®] DNA/RNA Water kit from MACHEREY-NAGEL demonstrates the highest recovery and lowest SARS-CoV-2 inhibition in Seattle-area wastewater

Implementation of techniques in a wastewater surveillance program – UCLA

Data courtesy of:

Merel Bot, MSc.

Roel Ophoff, PhD

Overview

- Surveillance program monitoring UCLA student housing
- 24 hr composite samples pulled twice per week using autosamplers (~90/week)
- Samples from both on-campus and off-campus locations
 - 32 on-campus sites
 - 11 off-campus sites
- Testing ~ 12,000 students on campus and 3,100 off campus

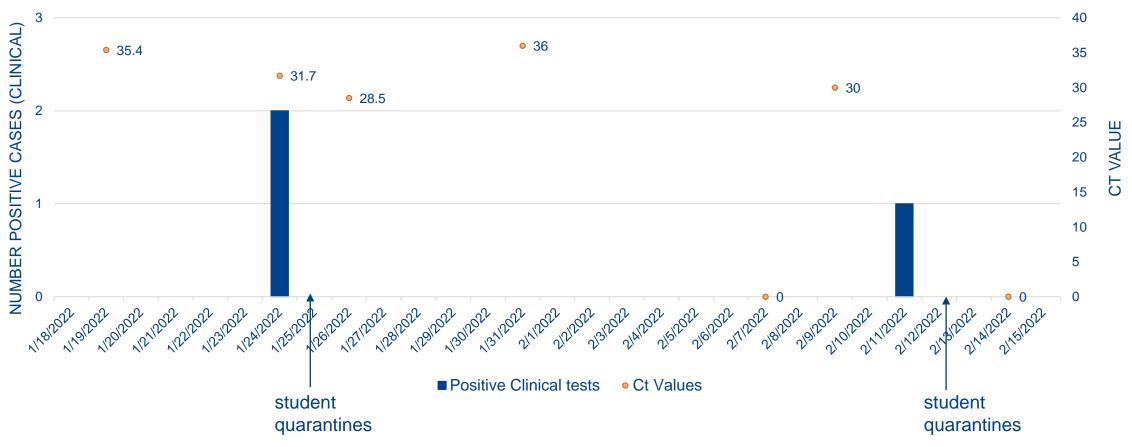
Method Development

- Previous PEG concentration and column based extraction method
 - Slow turn around time
 - Manual, prone to error, more hands-on
 - Lower sensitivity
- Current Nanotrap[®] Magnetic Virus Particles for concentration and NucleoMag[®] DNA/RNA Water for viral RNA extraction
 - Automated on a epMotion 5075 (liquid handling steps) and KingFisher Apex (concentration and extraction)
 - Same day turn around time
 - Quadrupled output
 - · Can operate with one technician (with a lunch break!)

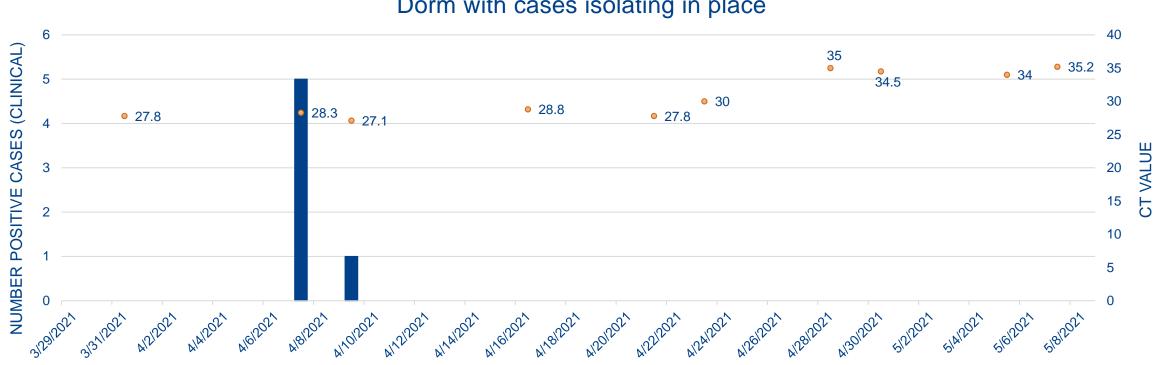
- Data provided same day to UCLA contact tracer team
- >10⁵ copies/L triggers student notification in affected building
- 10⁴ 10⁵ copies/L trend analysis
- Individual testing recommended

Guest House © Mapbox © OSM South Campus SARS-CoV-2 Status Not Detected Detected Inconclusive C Mapbox C OSM © 2022 Mapbox © OpenStreetMap

Sample Collection Data by Date


COVID-19 Wastewater Collection

Click to view historical trends



Dorm with cases moved to isolation location

Sensitivity - can detect a single positive case

Dorm with cases isolating in place

- Wastewater surveillance indicates positive cases prior to exhibition of symptoms or respiratory testing ٠
- Data crucial for project funding ۰

Benefits to the tested population

- Positive cases detected prior to symptom manifestation or in asymptomatic individuals
- Reduces further spread of COVID-19 in student population
- Important SARS-CoV-2 detection mechanism on campus
- Overall cost significantly less compared to widespread individual respiratory testing
- Less invasive than individual testing

Summary

- Wastewater surveillance for SARS-CoV-2 is cost effective and efficient with the right tools
- MACHEREY-NAGEL's NucleoMag[®] DNA/RNA Water kit is an excellent option for viral RNA extraction from complex samples
 - Scalable
 - Manual or automatable
 - Inhibitor removal technology
 - Compatible with multiple wastewater concentration techniques
- Combination of Ceres Nanotrap[®] particles and MN's Water kit provides excellent sensitivity for wastewater surveillance programs
 - Automatable and manual options
 - Proven techniques with multiple users and technical/application notes
 - Methodology useful for other applications beyond COVID-19 surveillance

Acknowledgements

W ENVIRONMENTAL & OCCUPATIONAL HEALTH SCIENCES UNIVERSITY of WASHINGTON I SCHOOL OF PUBLIC HEALTH

Sarah Philo, PhD candidate

Tara Jones-Roe Ben Lepene <u>https://www.ceresnano.com</u> <u>sales@ceresnano.com</u>

Merel Bot, MSc.

Melanie Hurtz, PhD Cynthia Ripoll, PhD

tech-bio@mn-net.com

Thank you!

Cynthia Ripoll, PhD, cripoll@mn-net.com I 1-985-285-9523

MACHEREY-NAGEL

www.mn-net.com