Determination of Extractable Organically Bound Fluorine (EOF) in Surface Water With Molecular Absorption Spectrometry



Speaker: Oliver Buettel, Analytik Jena US



#### PFAS are a very large class of synthetic chemicals

- Chains of carbon (C) atoms surrounded by fluorine (F) atoms, with different terminal ends
- Complicated chemistry –thousands of different variations exist in commerce
- Widely used in industrial processes and in consumer products
- Mobile via multiple air, water pathways
- Some PFAS are known to be PBT:
  - Persistent in the environment
  - **Bio-accumulative** in organisms
  - Toxic at relatively low (ppt) levels





#### PFAS are a very large class of synthetic chemicals

- Chains of carbon (C) atoms surrounded by fluorine (F) atoms, with different terminal ends
- Complicated chemistry –thousands of different variations exist in commerce
- Widely used in industrial processes and in consumer products
- **Mobile** via multiple air, water pathways
- Some PFAS are known to be PBT:
  - **Persistent** in the environment
  - **Bio-accumulative** in organisms
  - **Toxic** at relatively low (ppt) levels

# Drinking Water Health Advisories and \$1B in Funding

analy

An Endress+Hause

On June 15, 2022, EPA released four drinking water health advisories for PFAS. EPA also announced that it is inviting states and territories to apply for \$1 billion in Bipartisan Infrastructure Law grant funding to address PFAS and other emerging contaminants in drinking water.



- Drinking (Potable) Water Methods
  - Method 533: Determination of PFAS in Drinking Water by Isotope Dilution Anion Exchange SPE and LC/MS/MS (2019)
  - Method 537.2: Determination of Selected PFAS in Drinking Water by SPE and LC/MS/MS (2020)
- Total Florine Methods
  - Total Organic Fluorine (TOF) (EPA started to develop this method in 2021)
  - Total Organic Precursors (TOP) (TOP methods are commercially available. EPA considered the need for a thorough multi-laboratory validation study in 2021)
  - Draft Method 1621 Screening Method for the Determination of Adsorbable Organic Fluorine (AOF) in Aqueous Matrices by Combustion Ion Chromatography (CIC)



- AOF: Adsorption of organically bound fluorine on activated carbon
- EOF: Extraction of TOF using SPE/solvents

## Detection Techniques:

- Combustion Ion Chromatography (CIC)
- High-Resolution Continuum Source Molecular Absorption Spectrometry



analytik

An Endress+Hauser



## High-Resolution Continuum Source Molecular Absorption Spectrometry

- Atomic absorption techniques are based on the absorption of atomic spectral lines by gas-phase atoms in their ground electronic states. The atomic vapor is usually generated thermally in a flame (flame AAS) or graphite furnace tube (furnace AAS).
- Direct determination of nonmetals, such as fluorine, is impossible because their resonance lines are located in the vacuum-UV range
- Conversion of Fluorine into characteristic, diatomic molecules
- ✓ GaF, CaF, AlF, SrF ...
- ✓ Species-independent->Total Fluorine









- Coupling of Electronic transitions, Vibrational and Rotational fine structures (example: PO)
- Full width at half maximum similar to atomic absorption/emission lines → Selectivity,
   Specificity → high resolution





- HR-CS AAS: Analytik Jena contrAA 800 G
  - Xenon light source : Any wavelength available for analysis (185-900 nm)
  - CCD detection: spectral resolution 2 pm at 200 nm
  - Wide working range: 0.3 μg/L– 100 mg/L(GaF)



GaF 211.248 nm







| Parameter           | Specification                                                               |
|---------------------|-----------------------------------------------------------------------------|
| Device              | APUsim                                                                      |
| SPE cartridges      | Chromafix HR-P (polystyrene-divinylbenzene absorbent resin, Macherey-Nagel) |
| Flow speed          | 3mL/min (conditioning, elution), 5 mL/min (sa                               |
| Sample volume       | 500 – 2500 mL                                                               |
| Conditioning volume | 10 mL methanol                                                              |
| Elution volume      | 5 mL methanol, 5 mL acidified water                                         |



### Analytik Jena APU sim

# **Method Settings**



| Molecule | Wave-<br>length<br>[nm] | No. of<br>eval.<br>pixels | T <sub>Pyr.</sub><br>[°⊄] | T <sub>Atomis</sub> .<br>[° <b>C</b> ] | Ramp<br>[°C/s] | Meas.<br>[s | time<br>] | Modif                       | ier      | Baseline<br>correction |
|----------|-------------------------|---------------------------|---------------------------|----------------------------------------|----------------|-------------|-----------|-----------------------------|----------|------------------------|
| GaF      | 211.248                 | 5                         | 500                       | 1600                                   | 1500           | 6.5         | 5         | 3 μL Pd/ Mg/ Zr<br>modifier |          | IBC                    |
|          |                         |                           |                           |                                        |                |             |           | 9 µl Ga so                  | lution   |                        |
|          |                         |                           |                           |                                        |                |             |           | 3 µl NaAc s                 | olution  |                        |
| Step     | Name                    | Ter                       | np (°C)                   |                                        | Ramp (°C/s)    |             | Hold (s   | 3)                          | Gas purç | je                     |
| 1        | Drying                  | 80                        |                           |                                        | 5              |             | 25        |                             | max      |                        |
| 2        | Drying                  | 90                        |                           |                                        | 5              |             | 15        |                             | max      |                        |
| 3        | Drying                  | 11(                       | 0                         |                                        | 5              |             | 15        |                             | max      |                        |
| 4        | Pyrolysis               | 500                       | D                         |                                        | 200            |             | 10        |                             | max      |                        |
| 5        | Gas adaption            | n 500                     | 0                         |                                        | 0              |             | 5         |                             | stop     |                        |
| 6        | Atomize                 | 160                       | 00                        |                                        | 1500           |             | 6         |                             | stop     |                        |
| 7        | Gean                    | 24                        | 50                        |                                        | 500            |             | 5         |                             | max      |                        |

Spectra of Inorganic and Organic Mixture Calibration Standard



- Low background absorbance (red)
- Clear, interference-free GaF absorbance signal (blue)



\* blue: analyte signal, red: background signal



# LOD: 3.247 µg/L





## **Recovery rates for organic standards**

| Sample               | Enrichment<br>factor | Measured<br>value [µg/ L] | RSD[%] | Sample actual<br>concentration<br>[ng/ L] | Sample target<br>concentration<br>[ng/L] | Recovery rate [%] |
|----------------------|----------------------|---------------------------|--------|-------------------------------------------|------------------------------------------|-------------------|
| 4-FBA_1              | 50                   | 31.36                     | 5.6*   | 627.2                                     | 1000                                     | 62.7              |
| 4-FBA_2              |                      | 29.92                     | 2.2*   | 598.4                                     |                                          | 59.8              |
| 4-FBA_3              |                      | 32.13                     | 2.2*   | 642.6                                     |                                          | 64.3              |
| 4-FBA <sub>avg</sub> |                      | 31.79                     | 6.2**  | 635.8                                     |                                          | 63.6              |
| PFBS_1               | 50                   | 20.16                     | 4.4*   | 403.2                                     | 1000                                     | 40.3              |
| PFBS_2               |                      | 19.79                     | 2.2*   | 395.8                                     |                                          | 39.6              |
| PFBS_3               |                      | 21.58                     | 6.3*   | 435.6                                     |                                          | 43.6              |
| PFBS <sub>avg</sub>  |                      | 20.58                     | 5.1**  | 411.6                                     |                                          | 41.2              |
| LF0.5_1              | 50                   | 23.43                     | 4.2*   | 468.6                                     | 500                                      | 93.7              |
| LF0.5_2              |                      | 24.96                     | 2.6*   | 499.2                                     |                                          | 99.8              |
| LF0.5 <sub>avg</sub> |                      | 24.19                     | 3.8**  | 483.9                                     |                                          | 96.8              |
| LF1_1                | 50                   | 45.56                     | 4.5*   | 911.2                                     | 1000                                     | 91.1              |
| LF1_2                |                      | 51.14                     | 1.2*   | 1,023                                     |                                          | 102.3             |
| LF1 <sub>avg</sub>   |                      | 48.35                     | 5.9**  | 967.0                                     |                                          | 96.7              |
| LF2_1                | 50                   | 110.8                     | 1.3*   | 2,216                                     | 2000                                     | 110.8             |
| LF2_2                |                      | 111.1                     | 1.9*   | 2,222                                     |                                          | 111.1             |
| LF2 <sub>avg</sub>   |                      | 110.9                     | 1.2**  | 2,219                                     |                                          | 110.9             |

| Sample               | Enrichment<br>factor | no inorganic fluorine     |                          | 10 <sup>2</sup> exceed of | inorganic F              | 10 <sup>3</sup> exceed of inorganic F |                          |  |
|----------------------|----------------------|---------------------------|--------------------------|---------------------------|--------------------------|---------------------------------------|--------------------------|--|
|                      |                      | Measured<br>value [µg/ L] | RSD <sub>(n=3)</sub> [%] | Measured<br>value [µg/ L] | RSD <sub>(n=3)</sub> [%] | Measured<br>value [µg/ L]             | RSD <sub>(n=3)</sub> [%] |  |
| 4-FBA_1              | 50                   | 28.40                     | 1.0                      | 29.33                     | 0.6                      | 27.56                                 | 2.4                      |  |
| 4-FBA_2              |                      | 25.31                     | 2.0                      | 28.71                     | 6.2                      | 28.83                                 | 0.8                      |  |
| 4-FBA_3              |                      | 31.17                     | 1.4                      | 26.44                     | 1.5                      | 28.25                                 | 1.8                      |  |
| 4-FBA <sub>avg</sub> |                      | 28.29                     | 7.6                      | 28.16                     | 4.8                      | 28.21                                 | 2.2                      |  |

| Sample sampling date  | Enrichment factor | Measured value [µg/ L] | <b>RSD</b> [%] | Sample concentration [ng/L] |
|-----------------------|-------------------|------------------------|----------------|-----------------------------|
| Saale June, 30, 2020  | 250               | 42.59                  | 2.9            | 170.4                       |
| Saale الالا,13,2020   | 250               | 43.62                  | 4.7            | 174.5                       |
| y,15,2020 Saale       | 150               | 24.04                  | 3.6            | 160.2                       |
| White Elster الانارين | 250               | 60.76                  | 2.6            | 243.0                       |
| Saarbach Juli 12,2020 | 250               | 28.66                  | 5.7            | 114.6                       |



# The recovery rate of organically bound fluorine in nature matrix was **86%**.

| Sample   | Enrichment<br>factor | Measured<br>value [µg/ L] | RSD [%] | Sample actual<br>concentration [ng/ L] | Spike [ng/ L] | Sample target<br>concentration [ng/ L] |
|----------|----------------------|---------------------------|---------|----------------------------------------|---------------|----------------------------------------|
|          | 150                  | 23.09                     | 4.37    | 153.9                                  | 0             | -                                      |
| Saale_LF | 150                  | 62.89                     | 3.88    | 419.3                                  | 333.3         | 487.3                                  |



- 1. Optimized furnace program to provide high sample throughput and accuracy
  - Sample analysis time: 3 minutes/measurement
  - Spike recovery rate 86 % by spiking of river water sample with a known concentration of test fluorinated organic substance (lomefloxacin 333 μg/L F).
- 2. Highly sensitive method: low LOD, 3.2 ppb
- 3. Easy operation:
  - No cleaning steps required
  - Dilution and spike can be easily achieved with the autosampler

Thank you for your attention!

He and

-

100

Provide Statement

San San

Æ

-

ARRENT STREET

211/2

...

## Extraction

| Parameter           | Specification                                                               |
|---------------------|-----------------------------------------------------------------------------|
| deviœ               | APUsim                                                                      |
| SPE cartridges      | Chromafix HR-P (polystyrene-divinylbenzene absorbent resin, Macherey-Nagel) |
| Flow speed          | 3mL/min (conditioning, elution), 5 mL/min (sa                               |
| Sample volume       | 500 – 2500 mL                                                               |
| Conditioning volume | 10 mL methanol                                                              |
| Elution volume      | 5 mL methanol, 5 mL acidified water                                         |





Graphite furnace temperature program of total fluoride determination by means of MAS of AIF at 227.460 nm.

|                                                                                         | Temperature [°C]    | Ramp [°C/s]                   | Hold time [s]     | Argon flow |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------|---------------------|-------------------------------|-------------------|------------|--|--|--|--|--|--|
| Injection of reagent (8 $\mu$ g Al <sup>3+</sup> as Al(NO <sub>3</sub> ) <sub>3</sub> ) |                     |                               |                   |            |  |  |  |  |  |  |
| Drying                                                                                  | 70                  | 1                             | 0                 | Max.       |  |  |  |  |  |  |
| Drying                                                                                  | 110                 | 2                             | 3                 | Max.       |  |  |  |  |  |  |
| Injection of sa                                                                         | mple (6 µL) and mod | lifier (8 µg Ba <sup>2+</sup> | as $Ba(NO_3)_2$ ) |            |  |  |  |  |  |  |
| Drying                                                                                  | 70                  | 1                             | 0                 | Max.       |  |  |  |  |  |  |
| Drying                                                                                  | 110                 | 2                             | 3                 | Max.       |  |  |  |  |  |  |
| Pyrolysis                                                                               | 600                 | 40                            | 15                | Max.       |  |  |  |  |  |  |
| Auto zero                                                                               | 600                 | 0                             | 5                 | Stopp.     |  |  |  |  |  |  |
| Vaporization                                                                            | <mark>2100</mark>   | 1500                          | 5                 | Stopp.     |  |  |  |  |  |  |
| Cleaning                                                                                | 2450                | 100                           | 3                 | Max.       |  |  |  |  |  |  |



**Fig. 4.** High-resolution AIF molecular absorption spectrum in a graphite furnace at a pyrolysis temperature of 600 °C and a vaporization temperature of 2100 °C (assembled from three overlapping spectra; 7.5 ng fluoride, 8  $\mu$ g aluminum, 8  $\mu$ g barium).

| Stop * |  | * Nomo       | Temp. | Ramp   | Hold | Time | Ga    | as   | Ini  | E/D |
|--------|--|--------------|-------|--------|------|------|-------|------|------|-----|
| Step   |  | Name         | [°C]  | [°C/s] | [s]  | [s]  | Purge | Add. | inj. | C/P |
| 1      |  | Drying       | 80    | 6      | 5    | 13.3 | Max   | Stop |      |     |
| 2      |  | Drying       | 100   | 6      | 5    | 8.3  | Max   | Stop |      |     |
| 3      |  | Drying       | 160   | 10     | 5    | 11.0 | Max   | Stop |      |     |
| 4      |  | Drying       | 350   | 25     | 10   | 17.6 | Max   | Stop |      |     |
| 5      |  | Drying       | 1100  | 500    | 12   | 13.5 | Max   | Stop |      | *   |
| 6      |  | Drying       | 70    | NP     | 10   | 10.0 | Max   | Stop |      |     |
| 7      |  | Drying       | 80    | 2      | 10   | 15.0 | Max   | Stop | *    |     |
| 8      |  | Drying       | 110   | 5      | 15   | 21.0 | Max   | Stop |      |     |
| 9      |  | Pyrolysis    | 250   | 50     | 5    | 7.8  | Max   | Stop |      |     |
| 10     |  | Pyrolysis    | 500   | 200    | 5    | 6.3  | Max   | Stop |      |     |
| 11     |  | Gas adaption | 500   | 0      | 5    | 5.0  | Stop  | Stop |      |     |
| 12     |  | Atomize      | 1450  | 1200   | 5    | 5.8  | Stop  | Stop |      | 2.0 |
| 13     |  | Clean        | 2450  | 1200   | 4    | 4.8  | Max   | Stop |      | 20  |



- This is because with the Xenon lamp you can access any wavelength, including those of molecules. Traditional AAS instruments use hollow cathode lamps that emit line spectra characteristic to the element they contain. So these lamps simply don't produce the wavelengths the molecule is able to absorb.
- Another reason is the low resolution of traditional AA spectrometers, about 100x lower than the contrAA, which
  is not sufficient to properly isolate the molecule absorption lines.
- Lastly, you need the CCD detector to display the absorption spectrum for accurate background correction. That is
  also not possible with photomultipliers or similar detectors that are traditionally used in AAS.