Analysis of PFAS Extractables in Millex® Syringe Filters using LC/MS/MS

Lindsay D. Lozeau, Research Scientist, EMD Millipore Corporation, Burlington, MA 01803 Amy Laws, Product Segment Head – Cell & Analytical Filtration, EMD Millipore Corporation, Burlington, MA 01803 Maricar Dube, Technical Marketing Manager, EMD Millipore Corporation, Milwaukee, WI 53209

Introduction

Perfluoroalkyl substances (PFAS), a class of >4,000 perfluorinated compounds also known as "forever chemicals", represents a class of chemicals utilized in a variety of industries from firefighting foams to non-stick cooking surfaces. Unfortunately, their excellent properties and broad use has led to their persistent accumulation in environmental and biological matrices.

The mounting evidence of potential negative health impacts of PFAS compounds combined with the regulatory landscape evolving at an unprecedented pace has posed a significant analytical challenge.

Rapidly evolving regulations and new matrices

Agencies in the US, Europe, and across the globe have taken action in the last several years, leading to an uptick in published analytical testing methods. Early LC/MS/MS methods such as EPA 537.1 and EPA 533 were focused on detecting PFAS compounds in drinking water matrices and involved limited sample preparation.

As methods began to consider more complex, particulateladen matrices such as wastewater, biosolids, leachates, and environmental solids, filtration has become an important consideration to sample preparation. Filtering out particulates not only protects sample integrity and analysis, but also instrument and column lifetime. Some selected methods are listed in **Table 1**.

The concern about consumables

The PFAS methods require highly sensitive instruments with low limits of detection, and PFAS ubiquity in the environment increases concern that consumables such as collection bottles, tubing components, syringe filters, and others could be a contamination source for samples¹⁻².

Method(s)	Matrix/Matrices	Sample Preparation	Analytical Method
EPA 537.1 & EPA 533	Drinking water	SPE	LC-MS/MS
SW-846 Method 8327	Non-potable groundwater, surface water, wastewater	SPE, filtration	LC-MS/MS
ASTM D7968- 17a	Environmental solids	Solvent extraction, filtration	LC-MS/MS
ASTM D7979- 19	Water matrix (no drinking water)	Solvent extraction, filtration	LC-MS/MS
ISO 21675	Drinking, natural and wastewater	SPE, filtration as needed	LC-MS/MS
OTM-45	Air Emissions	Sampling train: filtration, impingers	LC-MS/MS
EPA Draft 1633	Aqueous, soil, biosolids, sediment, tissue	SPE, filtration	LC-MS/MS

Table 1: A selection of PFAS analytical methods.

A 250 mL water sample was spiked with surrogates. The internal spike of 0.08 ppb was used for QC blanks. To determine if sample filtration media contributes to PFAS contamination, the entire sample was passed through the filter and into a styrene divinylbenzene (SDVB) SPE cartridge. The sample bottles and tubes were rinsed with basic methanol, passed through the filter and into the cartridge. The entire sample was then subjected to SPE and concentrated to 1 mL in 96:4% (v/v) methanol:water prior to LC/MS/MS analysis using a C18 column. Analysis was performed using C13-labeled internal standards. The nylon and polyethersulfone (PES) syringe filters tested are listed in Table 2.

Cat. No.	Material	Pore (µm)	Diameter (mm)	No. Lots Tested
SLHP033NS	PES	0.45	33	3
SLGP033NS	PES	0.2	33	3
SLGN033NS	Nylon	0.2	33	3
SLGNM025NS	Nylon + glass fiber pre-filter	0.2	25	2

The **goal** of this study was to determine if there were detectable PFAS extractables in nonsterile Millex® syringe filters used for sample preparation in LC/MS/MS-based PFAS testing methods.

Experimental

A summary of the methods used for this study is shown in **Figure 1**. EPA 537.1, a test for drinking water, was used to test for PFAS contamination of filtration media in collaboration with SGS North America (Orlando, FL location).

	 250 mL wat surrogates^a QC blank in spike = 0.0 	ternal sta	
F(F ₂ C) _X	• Filtration w 0.45µm Mi	•	
	 SDVB SPE ((Methanol) Concentrate 96:4% v/v 	e sample	s to 1 mL ir
	LC/MS/MS,Analysis by		
0: 22UM PHILC 22UM PHILD 22UM PHILD 22UM PHILC 22UM PHILD 22UM PHI	IPLC Conditions 5ul autosampler injection Gradient Program	Column temperature –	50.0 °C
b b B	Time Water	MeOH Flow 0.1% acetic acid) ml/mi 35% 0.4 100% 0.4 100% 0.7 100% 0.7 35% 0.4	
$\frac{ W }{ W } \frac{ W }{ W } W$	ParameterValuePaGas Temp C250SłGas Flow (l/min)10CaNebulizer (psi)50VSheath Gas Heater275Ior	arameter heath Gas Flow (l/min) apillary (V) Charging nization Mode ollision Cell Gas	Value 10 4500 600 Neg ESI UHP N2

Figure 1: Workflow for testing PFAS extractables.

Table 2: Millex® syringe filter devices tested.

EMDMillipore.com

Results

		DI	MDI	Unit		PES).2μm		
Compound	Abbrev.	RL	MDL	Unit		_	Lot3	
oroalkylcarboxylic acids								
Perfluorobutanoic acid	PFBA	0.0040	0.0020	ppb				
erfluoropentanoic acid	PFPeA	0.0020	0.0010	ppb				
erfluorohexanoic acid	PFHxA	0.0020	0.0010	ppb				
rfluoroheptanoic acid	PFHpA	0.0020	0.0010	ppb				
uorooctanoic acid	PFOA	0.0020	0.0010	ppb				
fluorononanoic acid	PFNA	0.0020	0.0010	ppb		not	detecte	_
luorodecanoic acid	PFDA	0.0020	0.0010	ppb		noc	uelecte	u
fluoroundecanoic acid	PFUnDA	0.0020	0.0010	ppb				
rfluorododecanoic acid	PFDoDA	0.0020	0.0010	ppb				
erfluorotridecanoic acid	PFTrDA	0.0020	0.0010	ppb				
erfluorotetradecanoic acid	PFTeDA	0.0020	0.0010	ppb				
oroalkylsulfonic acids, perfl	uorooctanesulf	onamides	& perfluor	ooctan	esulfona	amido	acetic	ac
rfluorobutanesulfonic acid	PFBS	0.0020	0.0010	ppb				
erfluoropentanesulfonic acid	PFPeS	0.0020	0.0010	ppb				
rfluorohexanesulfonic acid	PFHxS	0.0020	0.0010	ppb				
rfluoroheptanesulfonic acid	PFHpS	0.0020	0.0010	ppb				
luorooctanesulfonic acid	PFOS	0.0020	0.0010	ppb			N)
rfluorononanesulfonic acid	PFNS	0.0020	0.0010	ppb		not	detecte	d
erfluorodecanesulfonic acid	PFDS	0.0020	0.0010	ppb				
FOSA	PFOSA	0.0040	0.0020	ppb				
-MeFOSAA	MeFOSAA	0.0040	0.0020	ppb				
-EtFOSAA	EtFOSAA	0.0040	0.0020	ppb				
otelomer sulfonates & next g	generation PFAS	S analytes						
:2 Fluorotelomer sulfonate	8:2 FTS	0.0080	0.0020	ppb				
:2 Fluorotelomer sulfonate	6:2 FTS	0.0080	0.0020	ppb				
2 Fluorotelomer sulfonate	8:2 FTS	0.0080	0.0020	ppb				
PO-DA	GenX	0.0040	0.0020	ppb		not	detecte	
ONA	ADONA	0.0080	0.0020	ppb		noc	400000	
1-PF3ONS (F-53B Major)		0.0080	0.0020	ppb				
LC1-PF3OUdS (F-53B Minor)		0.0080	0.0020	ppb				
ere no PFAS extractables d	etected in any f	filtrate for	the					
ranes tested below the instru	ument's reportir	ng and min	imum					
tion limits (Table 3).				C	hoosi	ing i	the I	1

Summary & Conclusion

The filtrate collected after filtering with nonsterile Millex® syringe filters made of PES or nylon was tested for PFAS extractables using LC/MS/MS in EPA Method 537.1 in collaboration with SGS North America. None of the 28 PFAS or PFAS-related compounds were detected in the filtrate at the reporting or minimum detection limits of the instrumentation. Therefore, when the filtration of samples is required for those emerging methods involving higher-particulate matrices, nonsterile Millex® filters with PES, nylon, or nylon with a glass fiber prefilter are all suitable options.

References

- tubes. Chemosphere. 222671-

© 2021 Merck KGaA, Darmstadt, Germany and/or its affiliates. All Rights Reserved. Merck, Millipore, and the vibrant M are trademarks of Merck KGaA, Darmstadt, Germany or its affiliates. All other trademarks are the property of their respective owners. Detailed information on trademarks is available via publicly accessible resources. Lit. No. MS PS9697EN

Table 3: List of PFAS and extractables results.

1. Lath S, Knight ER, Navarro DA, Kookana RS, McLaughlin MJ. 2019. Sorption of PFOA onto different laboratory materials: Filter membranes and centrifuge

678. http://dx.doi.org/10.1016/j.chemosphere.2019.01.096

2. Labadie P, Chevreuil M. 2011. Biogeochemical dynamics of perfluorinated alkyl acids and sulfonates in the River Seine (Paris, France) under contrasting hydrological conditions. Environmental Pollution. 159(12):3634-

3639. http://dx.doi.org/10.1016/j.envpol.2011.07.028

right membrane

For most analytical methods involving high particulate matrices, the analyst can choose whi type of filter they prefer **Primary consideration** for this choice include

- Pore size & Retention
- Chemical Compatibility
- Material and Analyte Binding
- Sample Volume and
- Membrane Disc Size Prefiltration
- Housing Material

Abbreviations

MDL = *minimum detection limits; RL* = *reporting limit; LOQ* = *limit of* quantitation; SPE = solid phase extraction; PFAS = perfluoroalkyl substances; LC-MS/MS = liquid chromatography tandem mass spectrometry; PES = polyethersulfone; HPF = high particulate filter; *ND* = *not detected*

Nylon-HPF PES Nylon 0.45µm 0.2µm 0.2µm Lot1 Lot2 Lot3 Lot1 Lot2 Lot3 Lot1 Lot2 ND – d in filtrate not detected in filtrate acids ND – d in filtrate not detected in filtrate ND – not detected in filtrate d in filtrate

Teal color = required compound by EPA 537.1

Cat. No.	Material	Lots Tested	Average retention of 0.5µm PS Beads
SLHN033NS	Nylon	3	100.0 ± 0.05
SLHP033NS	PES	3	99.50±0.79
		Loto	Average retention
Cat. No.	Material	Lots Tested	Average retention of 0.24µm PS Beads
Cat. No. SLGN033NS	Material Nylon		
		Tested	of 0.24µm PS Beads

Retention of PES & Nylon Membranes. Pore size is important to consider in comparison to your column size. Many UPLC columns require a 0.2µm filter while for HPLC columns, 0.45µm filters are sufficient.

> VIIIpore Preparation, Separation Filtration & Testing Products