BROOKSAPPLIEDLABS

Improving Data Quality in the Analysis of Metals and Metal Species – A Better Path Forward?

Ben Wozniak Ben@brooksapplied.com

When Methods Fail...

Meaningful process and compliance monitoring is impossible when the data is questionable

Sample	As - Lab 1	As - Lab 2	Units
Wastewater	52.8	0.13	µg/L
Sample	Total Rec. Se	Diss. Se	Units
Influent	662	638	µg/L
Effluent	24.1	226	µg/L

Fraction	Compliance Lab	External Digestion	Closed Vessel Digestion	Σ Se Species (LC-ICP- CRC-MS)	Units
Total Rec. Se	5.2	211	499	-	µg/L
Diss. Se		231	494	451	µg/L

Back to the Basics of the Process

Sampling

Preservation

www.brooksapplied.com

Sources: https://www.epa.gov/sciencematters/epa-researchers-investigate-impacts-wildfires-waterresources; https://us.vwr.com/store/product/31925283/hotblocktm-digestion-systems-environmentalexpress; https://www.agilent.com/cs/library/brochures/5991-5874EN_7800_ICPMS_Brochure.pdf

Project ID: example PM: example

Client PM: example

Client PO: example

Sample Results

Sample	Analyte	Report Matrix	Fraction	Result	Qualifier	MDL	MRL	Unit
IN-LAKE								
1609030-03	%TS	Sediment	N/A	36.70		0.10	0.33	%
1609030-03	Hg	Sediment	N/A	470		4.96	14.9	ng/g dry
1609030-03	MeHg	Sediment	N/A	0.685		0.022	0.069	ng/g dry
1609030-02	Hg	Water	Т	3.32		0.15	0.41	ng/L
1609030-02	MeHg	Water	т	0.189		0.020	0.050	ng/L
SL3								
1609030-08	%TS	Sediment	N/A	77.70		0.10	0.33	%
1609030-08	Ha	Sediment	N/A	92.7		2.53	7.58	ng/g dry
1609030-08	MeHg	Sediment	N/A	0.269		0.010	0.032	ng/g dry
1609030-07	Hg	Water	Т	6.00		0.15	0.40	ng/L
1609030-07	MeHg	Water	т	0.157		0.020	0.050	ng/L

Sampling & Preservation

Most methods for total elemental analyses in water use the same collection & preservation approach:

> Collect into HDPE container, preserve to pH < 2 using HNO₃

1	-						_											2
	Н			A	lkali Met	al												He
				Alkali	ne Earth	Metal												
3	3	4		Tran	sition N	letal							5	6	7	8	9	10
	1.1	De		Post-T	ransitior	n Metal								C	NI	\cap	Г	NIO
	LI	Бе		1	Metalloi	d							D	C	IN	U		ive
1	.1	12		٦	lonmeta	al							13	14	15	16	17	18
	Na	Mg		Ν	loble Ga	S							AI	Si	Ρ	S	Cl	Ar
1	.9	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	Κ	Са	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
3	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
5	55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ва	Lanthanides	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
8	37	88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
	Fr	Ra	Actinides	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Uuq	Mc	Lv	Ts	Og

Elements approved for ICP-MS in 40 CFR § 136.3

Preservation Problems

Preservation should desorb analyte from container walls and stabilize in solution

But standard preservation conditions can lead to loss of analyte from solution

Can be easily observed in speciation data generated by LC-ICP-MS

Sample	Acidified to pH < 2?	Se(IV)	Se(VI)	Other Se Species	Σ Se Species	Units
Wastewater A	No	213	91.3	5.8	310	µg/L
Wastewater A	Yes	10.4	84.2	14.0	109	µg/L
Wastewater B	No	378	172	7.2	557	µg/L
Wastewater B	Yes	20.7	174	23.6	218	µg/L

Impact of Sampling Containers

Container choice, combined with improper preservation, can lead to significant biases!

E.g., degradation of reduced Se species at low pH followed by adsorption to polymeric containers

Preparation Considerations

Standard preparation for elemental analyses typically involves:

- External vessel, acid-digestion for total recoverable fractions
- No digestion required for filtered / dissolved fractions (unless precipitates form upon preservation)

Preparation Problems

ICP-MS response is assumed to be independent of the form of the element introduced

What about volatile forms of an element?

Total Se			Dissolved Se			
Digested	Undigested	Digested	Undigested + N ₂ Purged	Trap Solution	Purged + Trap	Units
20.2	114	18.7	12.1	7.2	19.4	µg/L

www.brooksapplied.com

Source: ICP-MS Primer, Agilent Technologies publication 5989-3526EN

Preparation Problems

These types of issues are mentioned in older methods but are not common knowledge:

- "Elemental arsenic and many of its compounds are volatile; therefore, certain samples may be subject to losses of arsenic during sample preparation." (EPA 7061A)
- "Elemental selenium and many of its compounds are volatile; therefore, certain samples may be subject to losses of selenium during sample preparation" (EPA 7741A)
- Corganic selenium compounds rarely have been demonstrated in water. It is left to the experienced analyst's judgement whether sample digestion is required." (SM 3114-B)

Quantitative Analysis

Instrumentation has advanced significantly since early ICP-MS methods were promulgated

Košler, J & Sylvester, P. REV MINERAL GEOCHEM. 53. 243-275. S.D. Tanner et al. Spectrochimica Acta Part B 57 (2002) 1361–1452

Analytical Considerations

Guidance provided in regulatory methods (*e.g.*, EPA 6020B) has not kept pace with technological advancements

"Recent ICP-MS instruments may include collision or reaction cells for removal of molecular isobaric interferences.... Manufacturer recommendations should be followed for the configuration of the collision/reaction cell."

Modern ICP-MS instrumentation is very advanced but often marketed as "black box"

Spectral Interference Checks

SICs based on known, common interferences identified decades ago

➢ e.g. ⁴⁰Ca³⁵Cl⁺ interference on ⁷⁵As⁺

Required for EPA 6020B

"Collision or reaction cells.... may eliminate the need for most correction equations, but freedom from interference still needs to be demonstrated using the spectral interference check (SIC)"

Solution	SIC Concentration
Component	(mg/L)
AI	100.0
Са	300.0
Fe	250.0
Mg	100.0
Na	250.0
Р	100.0
К	100.0
S	100.0
С	200.0
CI	2000.0
Мо	2.0
Ti	2.0

SIC Limitations

Rely on *assumptions* about the interferents present What about Rare Earth Elements?

> not that rare in samples, but rarely included in SICs

REE Interferences

¹⁵⁰Nd²⁺ interference on ⁷⁵As⁺

Sample Name	He (KED)	Oxygen (75 \rightarrow 91)	Nd	Units
SIC Blank	< 0.8	< 0.8	ND	µg/L
SIC Blank + 100 µg/L As	105	103	ND	µg/L
Wastewater A	62.7	0.6	> 3000	µg/L

Gd on Se (*e.g.*, ¹⁵⁶Gd²⁺ on ⁷⁸Se⁺ & ¹⁶⁰Gd²⁺ on ⁸⁰Se⁺) 1 ppm Gd Standard $\textbf{78} \rightarrow \textbf{78} \quad \textbf{78} \rightarrow \textbf{78} \quad \textbf{78} \rightarrow \textbf{78} \quad \textbf{78} \rightarrow \textbf{78} \quad \textbf{78} \rightarrow \textbf{94}$ **80** → **96** Units 02 He H_2 NH_3 O_2 $\mathbf{O}_{\mathbf{2}}$ 15.7 2.19 0.010 0.017 67.4 3.65 µg/L

REE Interferences

Older model ICP-MS *can* account for these interferences, if operated appropriately...

Sample Name	Lab 1 (CRC)	Lab 2 (DRC)	Lab 2 (QQQ)	∑ As Species (LC-ICP- CRC-MS)	Units
Wastewater B (Nd > 2ppm)	52.8	0.31	0.13	< 0.5	µg/L

Speciation data can be complementary, but only if method can also account for REEs...

Even More Limitations of SICs

Ce known to form doubly-charged ions & oxides $\geq e.g.$, ¹⁴⁰Ce²⁺/¹⁴⁰Ce⁺ & ¹⁴⁰Ce¹⁶O⁺/¹⁴⁰Ce⁺ for tuning But what about CeO²⁺?

Precursor scan mode of tandem ICP-MS/MS

Standard QC Has Limits

Matrix Spikes and Dilution Tests may not reveal biases

Sample Name	Relative Dilution	He (KED)	Oxygen (75 \rightarrow 91)	Units
Wastewater C	1	58.5	0.6	µg/L
Wastewater C + 100 µg/L As	1	164.5	109.6	µg/L
Wastewater C	5	56.2	0.6	µg/L
Wastewater C + 100 µg/L As	5	160.9	106.8	µg/L

Matrix spike recoveries can be *species-dependent*

Sample	Spi	ked Spec	cies
Туре	Se(IV)	Se(VI)	SeMet
Wastewater	54%	103%	106%

Where Do We Go From Here?

Start by acknowledging that existing methods need updating

Develop new quality control practices

- Appropriate for the current generation of ICP-MS instruments
- Informed by our better understanding of the chemistry of elements in environmental matrices

Proficiency testing and reference materials *can* help, but *only* if matrices are challenging

Robust Digestion & Preservation

Standard digestion methods for metals in waters were developed in the 1980s – 1990s and may not be appropriate for today's treatment options...

Preservation must stabilize the analyte in solution & digestion must prevent losses

- Particularly problematic for reducing matrices
- Preservative may need higher oxidative capacity
- Digestion may need to be closed vessel

Better Method Validation

Method validation should include QC that is representative of the chemical form(s) of the element present in the matrices of interest

> Oxidized, reduced, volatile, complexed species, etc.

Speciation can help validate the accuracy of the preservation & digestion approaches

Better Interference Checks

Expect the unexpected – collect more data than needed Analyze multiple isotopes & collision/reaction modes (onmass and mass-shift)

ICP-MS/MS preferred (CRC or DRC can work)

> An interference check in every sample & every analyte

Element	Monitored isotopes	Recommended ISTD	Recommended reporting isotope	Minimum integration time (sec)	Analysis Mode
Chromium	52, 53Cr	¹⁰³ Rh	⁵² Cr	0.3	Helium
Manganese	⁵⁵ Mn	¹⁰³ Rh	⁵⁵ Mn	0.1	Helium
Nickel	^{60, 62} Ni	¹⁰³ Rh	⁶⁰ Ni	0.3	Heliun
Copper	63, 65Cu	¹⁰³ Rh	⁶⁵ Cu	0.1	Nelium
Zinc	^{66, 68} Zn	¹⁰³ Rh	⁶⁶ Zn	0.1	Helium
Arsenic	⁷⁵ As	⁷⁴ Ge	⁷⁵ As	0.5	Heium
Selenium	^{78, 82} Se	¹⁰³ Rh	⁷⁸ Se	0.3	Helium
Molybdenum	^{95, 98} Mo	¹⁰³ Rh	⁹⁵ Mo	0.1	Helium
Cadmium	111, 114 Cd	¹⁰³ Rh	¹¹¹ Cd	0.3	Heliun
Thallium	^{203, 205} TI	²⁰⁹ Bi	²⁰⁵ TI	0.1	Helium
Lead	206, 207, 208Pb	²⁰⁹ Bi	Sum isotopes	0.1	Heliuri

Closing Thoughts

Identifying whether contamination exists or remediation has been effective is impossible if data is unreliable

US EPA methods are widely referenced, domestically & internationally, so updated guidance would be impactful

A balanced approach focuses on the robustness of the entire process, not merely the acceptability of isolated QC

