

Environment Testing America

Progress on the Use of Accurate Mass qTOF for PFAS Investigations

Charles Neslund Scientific Officer and PFAS Practice Leader Eurofins Environment Testing America

The tools for **PFAS** forensics are a developing area of applications. We currently have several tools already in use that can be applied towards forensic investigations;

 Chemical Fingerprinting

- Isomer comparison
- Applications of TOP Assay

🛟 eurofins

Additional techniques that are gaining in use and application

Total Organic Fluorine Analysis
Non-Target Analysis

🛟 eurofins

Source: ITRC Naming Conventions and Physical Chemical Properties fact sheet

Chemical Fingerprinting – PFAS by Isotope Dilution

Matrices

- · Potable water
- Nonpotable water
- Soil/sediment
- Tissue/biota
- Dust wipes
- Landfill leachate
- AFFF Formulations

70 Compounds

Solid Phase Extraction/Cleanup using weak anion exchange

Isotope Dilution quantitation

• 25+ isotopically labeled internal standards

Injection Standards for monitoring instrument vs extraction performance

Advantages

- · Isotope Dilution offers the highest degree of quantitative accuracy and precision
- · Broadest list of compounds and widest range of matrices
- Lowest reporting limits across matrices

🛟 eurofins

🛟 eurofins

Perfluorobutanoic acid (PFBA)
Perfluoropentanoic acid (PFPeA)
Perfluorohexanoic acid (PFHxA)
Perfluoroheptanoic acid (PFHpA)
Perfluorooctanoic acid (PFOA)
Perfluorononanoic acid (PFNA)
Perfluorodecanoic acid (PFDA)
Perfluoroundecanoic acid (PFUnA)
Perfluorododecanoic acid (PFDoA)
Perfluorotridecanoic Acid (PFTriA)
Perfluorotetradecanoic acid (PFTeA)
Perfluorobutanesulfonic acid (PFBS)
Perfluorohexanesulfonic acid (PFHxS)
Perfluoroheptanesulfonic Acid (PFHpS)
Perfluorooctanesulfonic acid (PFOS)
Perfluorodecanesulfonic acid (PFDS)
Perfluorooctane Sulfonamide (FOSA)
Perfluoro-1-pentanesulfonate (PFPeS)
PFPrA

g

Perfluoro-1-nonanesulfonate (PFNS)	NFDHA	PFO4DA
Perfluorododecanesulfonic acid (PFDoS)	PFEESA	PFO3OA
Perfluoro-n-hexadecanoic acid (PFHxDA)	PFMPA	PFO2HxA
Perfluoro-n-octadecanoic acid (PFODA)	PFMBA	PFO5DA
IMeFOSAA	3:3 FTCA	R-EVE
IEtFOSAA	5:3 FTCA	NVHOS
IEtFOSA	7:3 FTCA	Hydro-EVE Acid
IMeFOSA	6:2 FTCA	EVE Acid
IMeFOSE	8:2 FTCA	R-PSDA
IEtFOSE	10:2 FTCA	Hydrolyzed PSDA
:2FTS	6:2 FTUCA	R-PSDCA
:2FTS	8:2 FTUCA	PS Acid
:2FTS	10:2 FTUCA	Hydro-PS Acid
0:2FTS	PFECHS	4:2 FTOH
DONA	PFPrS	6:2 FTOH
IFPO-DA (GenX)	PFMOAA	7:2S FTOH
1CI-PF3OUdS	PFECA G	8:2 FTOH
CI-PF3ONS	MTP	10:2 FTOH
PMPA	PEPA	

- Fluorotelomer Alcohols
 - GCMSMS method
 - Water and solids
 - Instrumental set-up like 8270E and extractions like 3510 and 3540/50
 - Current compound list
 - 4:2 Fluorotelomer alcohol
 - 6:2 Fluorotelomer alcohol
 - 7:2S Fluorotelomer alcohol
- 8:2 Fluorotelomer alcohol
- 10:2 Fluorotelomer alcohol

Chemical Fingerprinting

Herzke, et al., 2012, Chemosphere, 88, 980-987

🛟 eurofins

$$F_3C-CF_2-CF_2-CF_2-CF_2-CF_2-CF_2-CF_2-SO_3$$

CF₃

Linear Perfluorooctane sulfonate (PFOS)

Branched Perfluorooctane sulfonate (PFOS)

Figure 4-1. Linear and one branched isomer of PFOS

ITRC PFAS Fact Sheet Naming Conventions April 2020

Isomer Comparison

Chromatogram of PFOS Standard of Linear Isomer

Chromatogram of PFOS Standard of Branched/Linear Mix Typical Ratio

🛟 eurofins

Isomer Comparison

Chromatogram of PFOS Sample with Branched/Linear Mix High Bias Ratio

Chromatogram of PFOS Sample with Branched/Linear Mix Low Bias Ratio

What is the Total Oxidizable Precursor (TOP) Assay?

A PFAS sample preparation technique

- Indicates presence of unidentified precursors
- Used in conjunction with standard analysis
- Contrasts pre and post oxidation results

What the TOP Assay is NOT

- A risk assessment tool
- Total PFAS methodology
- Identify Unknown PFAS
- > Mass balance PFAS
- Non-target identification

https://pubs.acs.org/doi/10.1021/es302274g

🛟 eurofins

Environment Testing America 12

Compound	Pre-Ox	Post-Ox	Difference
PFBA	ND	98 ng/l	98 ng/l
PFPeA	ND	87 ng/l	87 ng/l
PFHxA	5 ng/l	61 ng/l	56 ng/l
6:2 FTS	100 ng/l	ND	- 100 ng/l
PFHpA	11 ng/l	32 ng/l	21 ng/l
PFOA	7 ng/l	26 ng/l	19 ng/l
PFOS	56 ng/l	52 ng/l	- 4 ng/l
8:2 FTS	26 ng/l	ND	- 26 ng/l
PFNA	ND	5 ng/l	5 ng/l

Total Organofluorine (TOF)

CASE STUDY

Total Organic Fluorine (TOF)410 mg F/kgExtractable Organic Fluorine (EOF)390 mg F/kgLC-MS/MS ΣPFAS (n=28)120 mg/kg

- Sample (or treated sample) is combusted in a furnace at 900°C – 1100°C
- Effluent collected in buffer and injected into ion chromatograph (IC)
- Quantify fluorine (as fluoride) content
- Compare ratio of total (or extractable) fluorine to total PFAS

CIC: Combustion Ion Chromatography

Environment Testing America 14

Quadrupole Time of Flight (qToF)

🛟 eurofins

Technique utilizes LC/MS-qTOF (quadrupole time of flight mass spectrometry)

- Technique allows for determination of accurate mass (0.0001 amu)
- Initial differentiation based on extraction of sample
- Then analysis of targeted compounds (knowns) to remove those from "background"
- Compare remaining peaks to limited mass spectral libraries to identify the known/unknowns
- Remaining peaks are unknowns and would rely on regression of accurate mass determinations for possible identification

Non-Target Analysis

Problems?

Accurate mass solves a variety of PFAS problems

No More Limitations

Precursors without TOP Assay No LIMS constraints Want to know all byproducts?

Byproducts?

SWATH uses a moving small mass window for nontarget MS/MS spectra; can capture all byproducts

QTOF exact mass analysis for > 40 PFAS analytes

Exact mass confirmation of 'suspect' positive results

Mitigation of matrix effects for short chain analytes

Application for PFAS lacking standards and unknowns (NTAs)

🛟 eurofins

Non-Target Results

#	Applyte Peak Name	Precursor	Found At	Library Hit	Library	Formula Finder	Formula Finder	Combined
	Analyte Feak Malle	Mass	Mass	Library m	Score	Results	Score	Score
47	207.1384 / 9.59	207.140	207.1386	Ser-Cys (NIST)	86.3	C13H20O2	77.080	81.702
75	205.1582 / 10.62	205.159	205.1591	Met-Gly (NIST)	82.3	C8H23N4P	83.194	82.724
93	271.2263 / 11.21	271.227	271.2271	DLbetaHydroxypalmitic acid (NIST)	81.8	C16H32O3	68.518	75.154
119	265.1468 / 12.04	265.148	265.1472	Dodecyl sulfate (NIST)	99.3	C8H24N6P2	78.457	88.862
127	199.1699 / 12.08	199.171	199.1699	Dodecanoic acid (NIST)	93.5	C12H24O2	81.919	87.725
128	297.1516 / 12.16	297.153	297.1520	Ricinoleic acid (NIST)	97.5	C8H21F2N8P	89.209	93.349
129	205.1591 / 12.22	205.160	205.1592	2,6-Di-tert-butylphenol (NIST)	100.0	C8H23N4P	82.310	91.155
130	297.2424 / 12.22	297.243	297.2428	Ricinoleic acid (NIST)	97.5	C18H34O3	71.444	84.466
146	514 9789 / 12 55	514 980	514 9792	CI-PFOS (chloro-perfluorooctane sulfonate)	89.8	C8H13EN6O15S2	98.473	94.123
140 514.57057 12.55	514.51057 12.55	514.500	514.5152	(neg)	00.0	C011311001332	50.415	04.120
152	309.1728 / 12.64	309.174	309.1733	Ethylene glycol dodecyl ether sulfate (NIST)	100.0	C14H30O5S	73.122	86.561
168	531.0069 / 12.94 M- H-	531.008	531.0081	CI-PFENS neg	81.5	Too many formula	0.000	40.743
171	353.1999 / 12.94	353.201	353.1996	Diethylene glycol dodecyl ether sulfate (NIST)	99.6	C15H29F3N4S	91.220	95.397
176	241.2162 / 13.06	241.217	241.2165	N2-Trifluoroacetyl-L-glutamine (NIST)	89.3	No formula found	0.000	44.666
192	293.1788 / 13.45	293.180	293.1784	Myristyl sulfate (NIST)	97.8	C14H30O4S	73.162	85.459
216	253.2158 / 14.02	253.217	253.2168	cis-7-Hexadecenoic acid (NIST)	97.8	C16H30O2	77.687	87.726
220	339.1986 / 14.08	339.200	339.1991	Tridecylbenzenesulfonic acid (NIST)	80.2	C13H33N4O2PS	89.239	84.697
260	281.2480 / 14.90	281.249	281.2479	1,4-D-Xylobiose (NIST)	100.0	C18H34O2	73.760	86.880
300	407.2938 / 15.97	407.295	407.2942	.gammaMuricholic acid (NIST)	96.5	C21H37FN6O	95.929	96.220
327	311.2943 / 17.36	311.295	311.2943	Benzenesulfonic acid, 4-undecyl- (NIST)	76.3	C16H36N6	53.227	64.777
434	265.1465 / 26.87	265.148	265.1470	Dodecyl sulfate (NIST)	84.6	C13H27FS2	84.840	84.720

Non-Target Results

🛟 eurofins

Non-Targeted Analysis

🛟 eurofins

Case Study

Note: the fragmentation pattern of the entire peak, although the 368.9 is present (Red Arrow) the primary fragmentation is 112.98.

Case Study

Note: The fragmentation of m/z 412.96 for the peak at 10.343 includes the pattern for PFOA, it also includes a predominant fragment at m/z 112.98; 134.98 and 184.95.

🛟 eurofins

Note: The fragmentation pattern at 10.50 (RT of peak in CAL standard) – Fragmentation of 412.96 shows the presence of 368.97 however not as the predominant peak. Also in the MS fragmentation, m/z 414.97 is predominant. The fragmentation mass error for m/z 368.98 is extremely high at 771.8 ppm.

Summary

Targeted PFAS

All Matrices – Up to 70 Compounds

Strengths: Selectivity, Sensitivity at ~1-5ppt Can be used for risk assessment Weaknesses: Limited list of compounds

Non-Target Analysis

All Matrices – Unknowns

Strengths: Ability to identify 'unknowns' with specificity Ability to conduct novel compound identification Weaknesses: Limited to current libraries Limited quantitation

Method Toolbox \mathbf{M}

TOP Assay

All Matrices – Oxidizable Precursors Strengths: Sensitivity at ~1-5ppt Specific to 'unknowns' with potential to convert to risk drivers Weaknesses: Not specific Does not complete a mass balance

Total Organic Fluorine

All Matrices – Organic Fluorine

Strengths: Closest to a mass balance Weaknesses: Sensitivity at ~1-5ppb No selectivity

🛟 eurofins

Environment Testing America 24

Thank You

Charles Neslund Charles.Neslund@Eurofinset.com 717-799-0439

