

TOTAL ORGANOFLUORINE (TOF) ANALYSIS BY COMBUSTION ION CHROMATOGRAPHY

A New Tool for Monitoring PFAS Impacts

Presented by: Heather Lord, PhD Bureau Veritas Toronto, Canada

OUTLINE

- Per- and Polyfluorinated Alkyl Substances (PFAS)
 - Why look beyond LC-MS/MS analysis?
- Total Organic Fluorine: TOF
 - Combustion Ion Chromatography (CIC)
 - AOF vs EOF
 - What do the results mean compared to LC-MS/MS analysis?
- AOF-CIC: How to Interpret Results
 - How rugged is the method?
 - Are there limitations?
 - Conclusions

PFAS ARE EVERYWHERE!

An overview of the uses of per- and polyfluoroalkyl substances (PFAS)†

Juliane Glüge, ^[b] *^a Martin Scheringer, ^[b]^a Ian T. Cousins, ^[b]^b Jamie C. DeWitt,^c Gretta Goldenman,^d Dorte Herzke, ^[b] ^{ef} Rainer Lohmann, ^[b]^g Carla A. Ng, ^[b]^h Xenia Trierⁱ and Zhanyun Wang^j

Environmental Sci. Processes Impacts, 2020, 22, 2345

† This article is Open Access: DOI: 10.1039/d0em00291g

Industries

Aerospace (7)	Mining (3)	
Biotechnology (2)	Nuclear industry	
Building and construction (5)	Oil & gas industry (7)	
Chemical industry (8)	Pharmaceutical industry	
Electroless plating	Photographic industry (2)	
Electroplating (2)	Production of plastic and rubber	
	(7)	
Electronic industry (5)	Semiconductor industry (12)	
Energy sector (10)	Textile production (2)	
Food production industry	Watchmaking industry	
Machinery and equipment	Wood industry (3)	
Manufacture of metal products (6)	/	

The numbers in parentheses indicate the number of subcategories.

Uses	
Cook- and bakingware	Plastic, rubber and resins (4)
Dispersions	Printing (4)
Electronic devices (7)	Refrigerant systems
Fingerprint development	Sealants and adhesives (2)
Fire-fighting foam (5)	Soldering (2)
Flame retardants	Soil remediation
Floor covering including carpets and	Sport article (7)
floor polish (4)	
Glass (3)	Stone, concrete and tile
Household applications	Textile and upholstery (2)
Laboratory supplies, equipment and	Tracing and tagging (5)
instrumentation (4)	
Leather (4)	Water and effluent treatment
Lubricants and greases (2)	Wire and cable insulation, gaskets and hoses
Medical utensils (14)	

LC-MS/MS ANALYSIS TELLS PART OF THE STORY

B U R E A U VERITAS

LC-MS/MS ANALYSIS TELLS PART OF THE STORY

BUREAU VERITAS

- Total Organic Fluorine: TOF
 - Combustion Ion Chromatography (CIC)
 - AOF vs EOF
 - What do the results mean compared to LC-MS/MS analysis?

CIC TOF DETERMINATION APPROACHES

CIC TOF DETERMINATION APPROACHES

TOTAL ORGANOFLUORINE ANALYSIS BY COMBUSTION IC

Science of the Total Environment 673 (2019) 384-391

Contents lists available at ScienceDirect Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Determination of adsorbable organically bound fluorine (AOF) and adsorbable organically bound halogens as sum parameters in aqueous environmental samples using combustion ion chromatography (CIC)

Reference: von Abercron et.al.: Sci. Tot. Environ., 2019, 673, 384-391

- 1. Water sample or soil extract diluted in water adsorbed in carbon cartridges
- 2. Carbon resin transferred to boat and combusted.
- Hydrogen fluoride (HF) in combustion gasses trapped in water.
- 4. Water with HF injected to Ion Chromatography
- 5. Fluorine signal reported as Total Adsorbed Organic Fluorine

Method described in Thermo Scientific Application Note 73481

BUREAU VERITAS LABORATORIES' TOF-CIC SYSTEM

AOF Sample Pre-Treatment

B U R E A U V E R I T A S

WHAT DO TOF RESULTS MEAN?

Remember...

TOF by CIC is measuring the *fluorine contribution* from all of the fluorine-containing compounds in the sample

LC-MS/MS **ZPFAS** vs. TOF-EQ

TOF Equivalent from ΣPFAS is ~65% -calculated for each PFAS individually and summed

If you want ΣPFAS and TOF-EQ reported with your PFAS data just ask!

LC-MS/MS vs. TOF/AOF-CIC: SOIL SAMPLES

☆ Sample was primarily 6:2 fluorotelomer sulfonate 6:2 FTS = 58% F

LC-MS/MS vs. TOF/AOF-CIC: SOIL SAMPLES

☆ Sample was primarily 6:2 fluorotelomer sulfonate 6:2 FTS = 58% F

LC-MS/MS vs. TOF-CIC: AFFF SAMPLE

CIC DL: 200 mg/L (due to sample dilution)

LC-MS/MS Data

Supplier Information:

"...readily biodegradable and virtually nontoxic to aquatic organisms. It is based on a natural protein foaming agent and contains no harmful synthetic detergent... can be successfully treated in biological wastewater treatment systems."

- AOF-CIC: How to Interpret Results
 - How rugged is the method? Are there limitations?

APPLICATION OF AOF-CIC TO SOILS

AOF-CIC reference method does not provide for soil analysis

Approach:

- Extract soils following the typical method for PFAS by LC-MS/MS
- Dilute soil extracts in water How Much Methanol?
- Process as per reference method for water samples

Question:

- What is the soil extraction recovery?
- <u>Note</u>: not relevant for PFAS by LC-MS/MS due to isotope dilution calibration.

Methanol Concentration Study

Soil extraction efficiency:

• PFAS standards spiked to real soil sample, extracted by **Accelerated Solvent Extraction**, and processed by **LC-MS/MS** by isotope dilution mass spectrometry.

RECOVERY vs SOIL ORGANIC MATTER

Only very high OM soil has significant impact on recovery.

RECOVERY vs SOIL ORGANIC MATTER

Spike level 30 µg/kg

HIGH OM SOIL RECOVERY vs SPIKE LEVEL

No significant impact of spike level on high OM soil recovery

HOW WELL DOES AOF-CIC COMPARE TO TOF-EQ?

thermoscientific

Thermo Scientific Application Note 73481

AOF by combustion IC – non-targeted complemental determination of PFAS in aqueous samples

Carboxylic Acids	Acronym	% Recovery
Trifluoroacetic acid	TFA	<2
Pentafluoropropionic acid	PFPrA	<2
Perfluorobutanoic acid	PFBA	52
Perfluoropentanoic acid	PFPeA	95
Perfluorohexanoic acid	PFHxA	84
Perfluoroheptanoic acid	PFHpA	82
Perfluorooctanoic acid	PFOA	64
Perfluorononanoic acid	PFNA	47
Perfluorodecanoic acid	PFDA	41
Sulfonic Acids		
Trifluoromethanesulfonic acid	TMSA	<2
Perfluoropropanesulfonic acid	PFPrSA	99
Perfluorobutanesulfonic acid	PFBS	100
Perfluoropentanesulfonic acid	PFPeSA	91
Perfluorohexane sulfonic acid	PFHxS	94
Perfluorooctane sulfonic acid	PFOS	64
Other		
6:2-fluorotelomer sulfonic acid	6:2 FTS	63
Hexafluoropropyleneoxide Dimer Acid	HFPO-DA	87

B U R E A U V E R I T A S

Authors noted some AOF-CIC recoveries are quite low.

Authors only evaluated at water analysis.

PFAS SOPs typically require minimum recoveries 60% to 70%.

Possible Sources for Low Recoveries:

- Combustion efficiency?
- · Carbon adsorption efficiency?

Note: High variability in PFAS recoveries is often seen in LC-MS/MS analysis as well, but is corrected for using isotope dilution mass spectrometry.

Tabular data adapted from App. Note

Combustion efficiency:

• Individual PFAS standards transferred to ceramic boats and combusted directly.

Combustion efficiency:

• Individual PFAS standards transferred to ceramic boats and combusted directly.

Carbon adsorption efficiency:

• Individual PFAS standards spiked to blank water and processed by TOF/AOF-CIC

RECOVERY COMPARISON: APP NOTE VS THIS INVESTIGATION

CONCLUSIONS

- 1. Carboxylates and Sulfonates C4-C9 recovered with good efficiency.
- 2. Some lower recoveries for high OM soils & highly volatile PFAS. AOF carbon adsorption efficiency could be improved.
- 3. Applicability to soil extract analysis is demonstrated.
- 4. Reduced cost & faster turn-around
- 5. Improved monitoring of remedial progress
- 6. Method improvements are under investigation.

ACKNOWLEDGEMENTS

Bureau Veritas

Lusine Khachatryan, MSc

Mandel Scientific

lan Robinson Ken Jespersen

Thermo Fisher Scientific

Peter Cheng Kirk Chassaniol

COMMENTS AND QUESTIONS

Heather Lord, PhD

Senior Manager, Advanced Organic Testing Services heather-lynn.lord@bureauveritas.com (905) 817-5711

Terry Obal, PhD, CChem

Chief Science Advisor taras.obal@bureauveritas.com (905) 288-2171

Stephanie Pollen, BSc

Account Manager, Ultra Trace Analysis stephanie.pollen@bureauveritas.com (905) 817-5130 For details about this service, please contact Bureau Veritas 888-357-7020 | www.bvna.com PFAS@bureauveritas.com

SHAPING A WORLD OF TRUST

WWW.BVNA.COM

