Determining Total Organic Fluorine in Wastewater and Process Water Samples

2021 NEMC – Bellevue, WA

Jay Gandhi, PhD

Metrohm USA

Today's Discussion

- PFAS background and trends
- Targeted vs. non-targeted analysis
- Adsorbable Organic Fluorine (AOF) sample preparation
- Combustion IC & fluorine analysis
- AOF CIC exemplary data
- Summary

Per- and polyfluoroalkyl substances (PFAS)

PFAS are manmade "forever" chemicals used in industry and consumer products.

Exposure to PFAS may have negative health effects.

Thousands of different PFAS-related compounds have been identified.

Current PFAS Regulatory Landscape

CURRENT TARGETED METHODS FOR LC-MS/MS:

- USEPA 533
- **USEPA 537.1**
- ASTM D7979
- SW846 method 8327

LC-MS/MS Targeted Technique

Use of expensive standards to quantify short list of compounds by MS

Analyte	Recovery
PFBS	•••
PFHxS	•••
PFOS	•••
PFBA	•••
PFOA	•••
PFNA	•••

Cons of Targeted LC-MS/MS

Identifies only a small fraction of Total PFAS

Quantifies an even smaller fraction of PFAS compounds with MS standards

Analyte	Recovery
PFBS	•••
PFHxS	•••
PFOS	•••
PFBA	•••
PFOA	
PFNA	

Total Impact

<u>Does not</u> determine the organic fluoride, the indicator of overall impact

Approaches to Measuring PFAS

Targeted analysis:

- Measure selected PFAS compounds using specific methodologies
- Currently limited to < 100 compounds
- Common technique: LC-MS/MS

Non-targeted analysis:

- Better risk assessment tool for true "impact" in the environment
- Measure organic fluorine
- Emerging technique: Combustion IC w/ AOF

Non-Targeted Analysis of Organic F with CIC

HOT TOPIC

Direct Combustion

Direct combustion:

Combustion of sample in CIC to measure Total F in solids/liquids

- Sample Prep
 - No Sample Prep

Approx. detection limit: 50 ppb F

Extractable Org F (EOF)

Capture & Elute:

Combustion of extracted liquid sample in CIC to measure Org F

- Sample Prep
 - Sample is passed through anion exchange cartridge
 - Elute PFAS with methanol & concentrate
- Approx. detection limit: 0.5-2 ppb (Sx Prep Dependent)

USEPA Method 533/537 or some modified version of

Adsorbable Org. F (AOF)

Capture & Combust:

Adsorption of Sample on to GAC and combust in CIC to measure Org F

- Sample Prep
 - Sample is passed through activated charcoal bed
 - Final wash with nitrate solution to remove inorganic fluoride
- Approx. detection limit: 0.5-2 ppb (Sx Prep Dependent)

Proposed method for ASTM/USEPA/DIN/ISO

AOF with Combustion IC

Most widely accepted technique available for nontargeted analysis with emerging regulatory landscape:

ASTM WK 68866:

 New Test Method for Determination of Adsorbable Organic Fluorine in Waters and Waste Waters by adsorption on Activated Carbon followed by Combustion Ion Chromatography

DIN 38409-59:

- Determination of adsorbable organically bound fluorine, chlorine, bromine and iodine (AOF, AOCI, AOBr, AOI) after combustion and ion chromatographic measurement
- Interlaboratory ruggedness study in progress

Commonly referred to as "Capture and Combust"

- Extracting up to 100mL sample provides improved detection (100X less than by direct CIC measurement)
- Complementary to LC-MS/MS methods as screening tool

Adsorbable Organic Fluorine (AOF) HOW DOES IT WORK?

Pass 100mL of liquid sample through activated carbon (organic compounds will stick to carbon)

Wash it with 25mL 10mM $NaNO_3$ to remove free fluoride

Nitrate Wash

Analyze carbon of each tube by Combustion IC

⚠ Metrohm

Combustion Ion Chromatography HOW DOES IT WORK?

Charcoal from each extracted tube is placed in a sample boat

Sample is combusted at 1050°C in oxygen and water to break C-F bond

Fluoride is trapped in absorber solution

Absorber solution is analyzed by IC for F

Combustion Ion Chromatography with AOF

Fully-automated measurement of Fluorine

Configured for AOF samples:

- Solids (Extracted charcoal)
- ➤ Liquids (standards, extracts, QC)

Flexible Calibration options

⚠ Metrohm

Calibration Options:

IC Calibration (only IC)

- 1) Calibrate IC using a series of inorganic fluoride standards (mass F vs. instrument response)
- 2) IC Recovery Check: Analyze IC check standard to verify recovery
- 3) CIC Recovery Check: Analyze an organic fluoride check standard through the entire combustion system to verify recovery of organic fluoride in CIC (Note: What happens when CIC recovery stays at 80%?)
- **4) AOF CIC Recovery Check:** Extract PFAS from a known aqueous sample containing organic fluoride by AOF and analyze charcoal by CIC to verify recovery of organic fluoride through the entire AOF CIC process

Fluoride (Anions)						
(µS/cm) x min]				0	
12.0 -	1					
8.0 -			_0_			
4.0 -		_0				
0.0 -	000					
	0.0	200.0	400.0	600.0	800.0 1000	10
	0.0	200.0	400.0	000.0	000.0	0.0 ngF

Function: $A = -0.0524388 + 2.11477E - 5 \times Q - 2.72938E - 12 \times Q^2$ Relative standard deviation. 0.837092%Correlation coefficient 0.999982

Calibration Options:

IC Calibration (only IC)

- 1) Calibrate IC using a series of inorganic fluoride standards (mass F vs. instrument response)
- 2) IC Recovery Check: Analyze IC check standard to verify recovery
- 3) CIC Recovery Check: Analyze an organic fluoride check standard through the entire combustion system to verify recovery of organic fluoride in CIC

NOTE: WHAT HAPPENS WHEN CIC RECOVERY STAYS AT 80%?

4) AOF – CIC Recovery Check: Extract PFAS from a known aqueous sample containing organic fluoride by AOF and analyze charcoal by CIC to verify recovery of organic fluoride through the entire AOF – CIC process

Calibration Options:

Calibration through Furnace (full CIC calibration)

- **1) Calibrate CIC** using a series of organic fluoride standards (*mass F* vs. *instrument response*)
- 2) CIC Recovery Check: Analyze an organic fluoride check standard through the entire combustion system to verify recovery of organic fluoride in CIC

NOTE: IT DOESN'T MATTER IF RECOVERY IS ALWAYS 80%.

3) AOF – CIC Recovery Check: Extract PFAS from a known aqueous sample containing organic fluoride by AOF and analyze charcoal by CIC to verify recovery of organic fluoride through the entire AOF – CIC process

AOF – CIC: Exemplary Data

Demonstrate recovery of a known standard across a range of concentrations

- Stock: 1ppm as F using 4-Fluorobenzoic acid in ethanol
- Evaluation Standards:5, 10, 50, 100ppb F

Sample ID	Total Peak Area (μS/cm x min)	Total Mass F (ng) on-column	Concentration (μg/L, ppb)	% RSD	Recovery
Blank	3.20	157	10.98	5.9	-
5ppb FBA	4.99	221	6.68*	8.9	134%
10ppb FBA	6.36	316	11.16*	12.0	112%
50ppb FBA	20.05	1026	49.85*	6.4	100%
100ppb FBA	28.63	1523	84.65*	5.3	85%

Total Peak Area, Total Mass F = sum of 2 tubes in series per sample

* Blank subtracted values

AOF – CIC: Exemplary Data

Unknown Samples: Ruggedness Study

- Standard sample
- Surface water sample
- Wastewater sample #1
- Wastewater sample #2

Sample ID	Total Peak Area (μS/cm x min)	Total Mass F (ng) on-column	Concentration (µg/L, ppb)	% RSD
Blank	3.20	157	10.98	5.9
Standard	4.57	237	6.48*	0.9
Surface water	4.62	240	6.68*	4.1
Wastewater 1	9.82	510	15.65*	6.6
Wastewater 2	4.29	222	6.17*	7.6

N = 4 samples

Total Peak Area, Total Mass F = sum of 2 tubes in series per sample

* Blank subtracted values

AOF Data - Independent Evaluation 50mls Sample used for AOF

Sample ID	% recovery, AOF	
PFOS - 1	73.3	
PFOS - 2	88.5	
6:2 FTS-1	106.1	
6:2 FTS-2	109.3	
NEtFOSAA -1	86.8	
NEtFOSAA -2	80.6	
PFOA -1	95	
PFOA -2	84.5	
FBA - 1	97.6	
FBA - 2	100.5	
PFBA -1	58.4	
PFBA -2	67.8	
30ppb MIX-1	69.1	
30ppb MIX-2	67.9	
30ppb+KHP -1	52.4	
30ppb+KHP -2	53.7	
Average	80.7	

Courtesy: Dr. Charles Neslund, Eurofins Labs

Note: When High TOC value samples were subjected to 6 carbon beds in series, PFAS recovery is ~79%

AFFF samples

MATERIALS AND METHODS

Aqueous Film-Forming Foams Analyzed. Nine contemporary FT AFFF (FT 1–9), undergoing MILSPEC testing were purchased along with a synthetic fire-fighting foam designed for Class A applications (PFOS-CHEK, advertised to be PFAS-free) by the National Institute of Environmental Health Science (NIEHS) from commercial sources in 2018 (Table S1). One legacy ECF AFFF was obtained as a 1L low-density polyethylene (Nalgene, Rochester, NY) subsample of FC-203CF 3 M LightWater 3% Concentrate AFFF manufactured in 2001. Prior to subsampling, the 10 AFFF and Class A foam were stored in their original containers at ambient temperature. We anonymized the identities of these AFFF (Table S1) using a random number generator and conducted blinded sample analysis.

In the AOF – CIC technique, there are several places where background contribution can adversely affect results and sensitivity. *Minimizing the blank values are key.*

The keys to success...

- Use suitable activated charcoal tubes (AOX vs AOF)
- Use high purity water/reagents
- Proper operation of the Combustion IC system to control background contribution
- Good laboratory practice

Summary

- Non-targeted analysis provides a better risk assessment of true PFAS impact
- Organic fluoride measurements capture more information than targeted PFAS analysis alone
- Combustion ion chromatography is ideal for measuring total fluorine in a variety of sample types
- Adsorbable Organic Fluoride sample preparation effectively removes inorganic fluoride and concentrates organic fluoride compounds
- Accrediting bodies are actively developing AOF-CIC testing methodologies

Metrohm CIC Advantage

1 Robust & Efficient Combustion

2 Low Cost of Operation

3 Flexible Calibration Options

4 One Software Platform

All-inclusive Support of Complete Combustion IC System

Thank You

Questions? Please contact us at communications@metrohmusa.com