US EPA Method 524.2: Software Tools for Successful Method Development and Analysis of Purgeable Organic Compounds in Drinking Water

Anastasia A. Andrianova, Ph.D. GC/MS Applications Scientist

Bruce D. Quimby, Ph.D. Senior GC/MS Applications Scientist

Volatile Organic Compound (VOC) Testing

EPA method 8260	Surface and ground water as well as solid sample matrices
EPA method 624	Wastewater samples The procedures are very similar to 8260, however, the reported compound lists are somewhat different
EPA method 524.2	Drinking water The conditions used in this method enables a lower detection limit to be reached. This provides results that meet drinking water regulatory limits or MCLs

Purge and Trap vs. Headspace Analysis for VOCs EPA 524.2 requires the use of purge and trap

METHOD 524.2

MEASUREMENT OF PURGEABLE ORGANIC COMPOUNDS IN WATER BY CAPILLARY COLUMN GAS CHROMATOGRAPHY/MASS SPECTROMETRY

1. SCOPE AND APPLICATION

- 1.1 This is a general purpose method for the identification and simultaneous measurement of purgeable volatile organic compounds in surface water, ground water, and drinking water in any stage of treatment (1,2). The method is applicable to a wide range of organic compounds, including the four trihalomethane disinfection by-products, that have sufficiently high volatility and low water solubility to be removed from water samples with purge and trap procedures The following compounds can be determined by this method.
- 6.2 PURGE AND TRAP SYSTEM The purge and trap system consists of three separate pieces of equipment: purging device, trap, and desorber. Systems are commercially available from several sources that meet all of the following specifications.

US EPA Method 524.2 VOCs in Water

EPA method 524.2 provides procedures and requirements for the quantitation of VOCs in surface water, ground water, and drinking water by GC/MS

Four specific groups of VOCs

- Trihalomethanes (THMs)
- Gases
- Aromatics
- Products of dehydrohalogenation

Dichlorodifluoromethane	Methyl acrylate	Toluene	1,4-Dichlorobut-2-ene
Chloromethane	Bromochloromethane	trans-1,3-Dichloropropene	Propylbenzene
Chloroethene	Methylacrylonitrile	Ethyl methacrylate	2-Chlorotoluene
Bromomethane	Tetrahydrofuran	1,1,2-Trichloroethane	Mesitylene (1,3,5- Trimethylbenzene)
Ethyl chloride	Trichloromethane	Tetrachloroethylene	tert-Butylbenzene
ichloromonofluoromethane	1,1,1-Trichloroethane	1,3-Dichloropropane	1,2,4-Trimethylbenzene
Ethyl ether	1-Chlorobutane	2-Hexanone	1-Methylpropyl benzene
1,1-Dichloroethene	Carbon Tetrachloride	Dibromochloromethane	1,3-Dichlorobenzene
Acetone	1,1-Dichloropropene	1,2-Dibromoethane	p-Cymene (4-Isopropyltoluene)
lodomethane	Benzene	Chlorobenzene	1,4-Dichlorobenzene
Carbon disulfide	1,2-Dichloroethane	1,1,1,2-Tetrachloroethane	1,2-Dichlorobenzene-d4 (SURR)
Allyl chloride	Fluorobenzene (ISTD)	Ethylbenzene	1,2-Dichlorobenzene
Methylene chloride	Trichloroethylene	m+p-Xylene	n-Butylbenzene
Acrylonitrile	1,2-Dichloropropane	o-Xylene	Hexachloroethane
trans-1,2-Dichloroethylene	Dibromomethane	Styrene	1,2-Dibromo-3-chloropropane
Methyl tert-butyl ether	Methyl methacrylate	Tribromomethane	Nitrobenzene
1,1-Dichloroethane	Bromodichloromethane	Isopropylbenzene	1,2,4-Trichlorobenzene
2,2-Dichloropropane	2-Nitropropane	p-Bromofluorobenzene (SURR)	1,1,2,3,4,4-Hexachlorobuta-1,3- diene
cis-1,2-Dichloroethylene	cis-1,3-Dichloropropene	Bromobenzene	Naphthalene
2-Butanone	2,2-Dimethoxybutane	1,1,2,2-Tetrachloroethane	1,2,3-Trichlorobenzene
Propanenitrile	Methyl Isobutyl Ketone	1,2,3-Trichloropropane	

80 target compounds

Parameters for GC, MSD, and P&T Necessary for Success

Hardware:

• GC/MS system coupled with a purge and trap (P&T) concentrator, and a liquid vial autosampler

MS Tuning:

• BFB Autotune

Software tools to streamline:

- Quantitation method development
- Data processing
- Reporting

US EPA Method 524.2 **Instrument Configuration** Consumables: 1.0 mm inlet liner (5190-4047) DB-624UI, 20m x 0.18 mm x 1µm column • (121-1324UI) 6 mm diameter stainless steel drawout lens **Moisture Control** (G3163-20530) System (MCS) Heated transfer line ∄ Helium Split Ratio 150:1 carrier Split/Splitless 6 mm Drawout Inlet (Helium) Lens Heater El Stainless 20 m Water x 0.18 mm Steel Source DB-624 UI (5 mL) Trap AQUATek LVA 8860 **Autosampler Teledyne Tekmar** GC **5977B MSD** Lumin P&T Concentrator

August 10, 2021 DE44392.4102199074

Tune Evaluation: Meeting BFB Tune Check Criteria

EPA 524.2 requires that the spectrometer must produce a mass spectrum that meets all criteria in Table 3 when 25 ng or less of 4-bromofluorobenzene (BFB) is introduced into the GC.

TABLE 3. ION ABUNDANCE CRITERIA FOR 4-BROMOFLUOROBENZENE (BFB)

Mass (M/z)	Relative Abundance Criteria
50	15 to 40% of mass 95
75	30 to 80% of mass 95
95	Base Peak, 100% Relative Abundance
96	5 to 9% of mass 95
173	< 2% of mass 174
174	> 50% of mass 95
175	5 to 9% of mass 174
176	> 95% but < 101% of mass 174
177	5 to 9% of mass 176

177

176

5

9

6.8

486

Pass

Tune Evaluation: Meeting BFB Tune Check Criteria

MassHunter Quantitative Analysis in Environmental Quant Mode (EnviroQuant)

File	Edit	View Analyze Met	hod Update	Report	Tool	s He	P					
0		Quantita	te Batch 🔹	01		Actio	ns I	1	Restore D	efault Layou	at .	
Batch Ta	able					Audit	Trail					
Sam	ple:	Tune Evaluation 0	01	+ 8		Tune	Evaluation			+ Comp	ound: 💽	2-F
11			Sa	mple		Optic	ms		2-F	uorophenol I	Results	bis(2
1	8	Name	Data File	Тур		Num	ber Formats	me	RT	Final Conc.	Accuracy	RT
•		Tune Evaluation 01	TuneChk d	TuneChe		Add-	los	m.				
	*	Calbration 20 ng/ul	20NG.d	Cal	-	120	11000/2014 0.40	pm.	8.284	19.6847	98.4	10.5
	7	Calbration 50 ng/ul	50NG.d	Cal		50	13/08/2014 6:43	p.m.	8.285	52,9946	106.0	11.0
101	1	Calbration 00 metal	A DIADO	C-1		0.0	12/08/2014 6-42		0 200	02 0552	104 9	11/

96

173

174

175

176

177

95

174

95

174

174

176

5

0

5

5

95

50

9

2

9

9

100

101

7.3

0.6

7.9

99.8

6.8

88.2

591

41

7164

569

7151

486

Pass

Pass

Pass

Pass

Pass

Pass

For more information: Agilent application note 5991-0029EN

Tune Evaluation: Meeting BFB Tune Check Criteria

MassHunter Quantitative Analysis in Environmental Quant Mode (EnviroQuant)

File	Edit	View Analyze Met	hod Update	Report	Tool	Is Hel	P					
21		Quantita	te Batch 🔹	01		Actio	ns I	1	Restore D	efault Layo	ut	
Batch T	able					Audit	Trail					
Sam	ple:	Tune Evaluation 0	01	- 8		Tune	Evaluation			- Com	oound: 厘	2-F
1			Sa	mple		Optic	ons		2-F	luorophenol	Results	bis(2
1	8	Name	Data File	Тур		Num	ber Formats	me	RT	Final Conc.	Accuracy	RT
•		Tune Evaluation 01	TuneChk d	TuneChe		Add-	los	m				
	*	Calbration 20 ng/ul	20NG.d	Cal	-	120	11000/2014 0.40	pm.	8.284	19.6847	98.4	10.5
	7	Calbration 50 ng/ul	50NG.d	Cal		50	13/08/2014 6:43	p.m.	8.285	52.9946	105.0	11.0
100	1	Calbration 90 polul	90MG d	Cal		0.0	12/08/2014 6-42	-	8 200	02 0552	10/ 9	11/

>

176

177

174

176

95

5

101

9

99.8

6.8

Apps

TuneEvaluationUI.exe

A stand-alone Tune Evaluation app (installed automatically with MassHunter Quantitative Analysis)

For more information: Agilent application note 5991-0029EN

7151

486

Pass

Pass

Total Ion Chromatogram of Method 524.2 50 µg/L Standard, ISTD and Surrogates (5 µg/L)

80 target compounds

2 surrogates

Setting up EPA 524.2 Analysis with MassHunter

1. A VOC standard was analyzed and the deconvoluted spectra were searched against the NIST spectral library for compound identification using MassHunter Unknowns Analysis

Setting up EPA 524.2 Analysis with MassHunter

- 1. A VOC standard was analyzed and the deconvoluted spectra were searched against the NIST spectral library for compound identification using MassHunter Unknowns Analysis
- A user library was created using MassHunter Library Editor. It included the identified compounds with their retention times and deconvoluted spectra

Setting up EPA 524.2 Analysis with MassHunter

- 1. A VOC standard was analyzed and the deconvoluted spectra were searched against the NIST spectral library for compound identification using MassHunter Unknowns Analysis
- A user library was created using MassHunter Library Editor. It included the identified compounds with their retention times and deconvoluted spectra
- 3. A quantitation method was created from the user spectral library using the compound information and retention times included in the library using MassHunter Quantitative Analysis
- 4. Real-world samples were analyzed with the quantitation method. Spectral deconvolution allowed for confirmation of compound identifications.

The concentration of the VOCs in the real-world sample was determined against the initial calibration

Step 1: Analyzing a Standard

Analyze a calibration standard with Unknowns Analysis against the NIST library

Step 1: Analyzing a Standard

Analyze a calibration standard with Unknowns Analysis against the NIST library

15

August 10, 2021

DE44392.4102199074

Step 2: Creating a Spectral Library

Analyze a calibration standard with Unknowns Analysis against the NIST library

August 10, 2021

Step 2: Creating a Spectral Library

Analyze a calibration standard with Unknowns Analysis against the NIST library

Step 2: Creating a Spectral Library

Export deconvoluted spectra to the Library Editor and review

Tools H	Help					
	X 🖻 🛍 り で 🖧 🏦	Р×				
ound Ta	able					
Comp	pound ID Compound Name	CAS#	Formula	Molecular Weigh	Retention Time	Retention Index
	3 Methane, bromo-	74-83-9	CH3Br	93.94	2 1.752	2
	4 Ethyl Chloride	75-00-3	C2H5CI	64.00	8 1.857	5 445.0000
	5 Trichloromonofluoromethane	75-69-4	CC13F	135.90	5 2.120	5
	6 Ethyl ether	60-29-7	C4H100	74.0	3 2.466	3 495.0000
	7 Ethene, 1.1-dichloro-	75-35-4	C2H2Cl2	95.9	3 2.682	8 540.0000
	8 Acetone	67-64-1	C3H6O	58.04	2 2.793	4 455.0000
	9 Methane iodo-	74-88-4	CH3I	141.92	8 2 841	0
	10 Carbon disulfide	75,15,0	C\$2	75.9	4 2 907	1
	11 Allyl chloride	107.05.1	C3H5CI	76.0	8 3 145	0 535,0000
	12 Mathulana ablarida	75.09.2	CHOCIO	22.00	2 2 200	a 0000.0000
	12 Academitrile	107.12.1	COLON	52.0	7 2.696	1 555 0000
	14 Dividence 1.2 diabilare trans	150 00 5	COHON	95.0	2 2 2700	1 500.0000
	14 Euriyiene, 1,2-uichloro-, aans-	1624.04.4	CENIDO	33.3	a 3.705	C 510,0000
	10 Diana 11 dalate	75.04.0	COHIZO	07.00	3 3.700	0 500,0000
	16 Ethane, I, I-dichloro-	70-34-3	C2H4CI2	97.90	9 4.369	9 566.0000
	17 Propane, 2,2-dichloro-	594-20-7	C3H6CI2	111.90	5 5.191	8 550.0000
	18 Ethylene, 1,2-dichloro-, cis-	106-09-2	C2H2U2	95.9	3 5.201	7 580.0000
	19 2-Butanone	<u>78-93-3</u>	C4H8U	72.0	8 5.296	0 555.0000
	20 Propanenitrile	107-12-0	C3H5N	55.04	2 5.346	3 565.0000
	21 2-Propenoic acid, methyl este	96-33-3	C4H6O2	86.03	7 5.424	5 576.0000
	22 Methane. bromochloro-	74-97-5	CH2BrCl	127.90	3 5.502	9
ctrum Vie	w					
lax. # of p	anes: 2 🔹 🔍					
Sin	ngleQuadrupole + Scan Trichloromonol	luoromethane (75-69-	4)			
×10 • 1		101.)			
0.95-						
0.9-						
0.85-						
0.8-						
0.7						
0.65-						
0.6-						
0.55-						
0.5-						
0.4						
0.35-						
0.3-						
0.25-						
0.2-						
0.1-	47.0 66.0					
0.05 -	35.0	82.0	119.0	100 0		
			110.0	155.0 13	10 213	10

Step 3: Creating Quantitative Analysis Method New method from acquired scan data with library search

📅 Agilent MassHunter Quantitative Analysis (for GCMS and LCMS) - Purge&Trap Cal_try 2_01-24-2019 - App Note_Corrected_Cal_try -2_ADDED more QUAL IONS_P-T_8860-01-24-2019.batch.bin

	ile Edit View Analyze Method Update	Libra	y Report T	Fools Help	,																
	New		New Metho	od from Ac	quired SIN	/I Data		//													
	Open •	•	New Metho	od from Ac	quired Sca	an Data															
	Append		New Metho	od from Ac	quired Sca	an Data with Library Se	arch] E1	thene	, 1,1-dich	loro-	- [IST	D: Benzene	fluoro-				1	💎 ヤ 😵	99
	Edit F10		New Metho	od from Ac	quired Ch	romatographic Data		Et	nene,	1,1-dichl	Qualifie	r (96.0) Re	e Quali	fier (98.0) R	e Qualifi	er (63.0) Re	Benze	ne, fluoro- (ISTD)	Qualif	er (77.0) Re	
	Validate		New Metho	od using M	anual Seti	up		4	lrea	Accuracy	Ratio	MI	Ratio	MI	Ratio	М	RT	Resp.	Ratio	MI	
R	Save	-	New metho	od from lib	rary - GC			H	982		40.3				32.6		6.613	206229	9 1.6		-
	Save As		New metho	od from libi	rary - LC			⊢	Ne	w Meth	od fror	m Acqui	ired Sc	an Data y	vith Lib	rary Searc	h	×	1.6		-
	Method Report		New Metho	od from CE	F file											,		~	2.0		
	Eula E11		corrected D	Cal	10	1/25/2019 9:25 AM	10 000	1	L	ibrary Me	thod:								1.7		-
	EXIL	ppb	D	Cal	25	1/24/2019 8:47 PM	25.000	2 2		-	\andrian	no\Docur	ments\	2019 Vola	tiles_Pur	ge&Trap\P	AU T&	lib method.m	1.8		
	Method Setup Tasks	ppb	D	Cal	50	1/24/2019 9:16 PM	50.000) 5		L									1.8]
	Manual Setup Tasks							=						Choose		New		Edit			
									S	ample Pa	ath:										
										[urge&Tr	rap Cþil_t	ry 2_0 [.]	1-24-2019	.50 ppb_	ISTD 5ppb	o.D	Browse			
										lumber of	Qualifie	ers to add	1:								
										ŀ	3		÷								
																	_				
															L	OK		Cancel			

Step 3: Creating Quantitative Analysis Method Define ISTD and surrogates

📅 Agilent MassHunter Quantitative Analysis (for GCMS and LCMS) - [N	lew Met	hod]						
File Edit View Analyze Method Update Library Report Tools	Help								
🛅 🗁 🛃 斗 💭 Analyze Batch 🕶 🞯 🛛 Layout: 🔜 🔡			🕼 📝 Restore Default Layout						
Method Tasks 🗸 🗸	Method	d Tab	le						
New / Open Method	Tim	ne Se	egment: 👄 <all> 🔻 🔿</all>	Compound:	🔙 Benzene, fluoro-	🔹 📑 📄 Reset Table Vi	ew		
Workflow	-	Qui	antifier	I					
Method Setup Tasks			Name	RT 4	Scan	Туре	MZ	CAS#	Match Factor
Compared Colum			1-Propene, 1,1-dichloro-	6.038	Scan	Target	75.0	<u>563-58-6</u>	100.0
Compound Setup			Benzene	6.274	Scan	Target	78.0	<u>71-43-2</u>	99.9
K Retention Time Setup			Ethane, 1,2-dichloro-	6.308	Scan	Target	62.0	<u>107-06-2</u>	99.5
1570 Setup		• •	Benzene, fluoro-	6.614	Scan	Target 🗸 🗸	96.0	<u>462-06-6</u>	100.0
* Concentration Setun			Trichloroethylene	7.023	Scan	Target	130.0	<u>79-01-6</u>	100.0
- Concentration Setup		-	Propane, 1,2-dichloro-	7.261	Scan	Surrogate	63.0	<u>78-87-5</u>	100.0
🛣 Qualifier Setup			Methane, dibromo-	7.379	Scan	Matrix Spike	174.0	<u>74-95-3</u>	100.0
🗶 Calibration Curve Setup			Methyl methacrylate	7.453	Scan	Target	100.0	<u>80-62-6</u>	100.0
-			Methane, bromodichloro-	7.568	Scan	Target	83.0	<u>75-27-4</u>	99.2
Globals Setup			Propane, 2-nitro-	7.820	Scan	Target	43.0	<u>79-46-9</u>	99.5
Save / Exit		-	1-Propene, 1,3-dichloro-, cis-	8.044	Scan	Target	75.0	10061-01-5	100.0
nin verse.			2,2-Dimethoxybutane	8.105	Scan	l arget	89.0	3453-99-4	99.9
Validate			Methyl Isobutyl Ketone	8.23/	Scan	l arget	58.0	108-10-1	99.7
The Save			1 Decese 12 diables have	8.380	Scan	Target	91.0	10001 02 0	100.0
Cours As		\square	I-Propene, 1,3-dichloro-, trans-	8.619	Scan	Target	/5.0	10061-02-6	100.0
Save As		-	Ethano 112 trichlero	0.740	Sean	Target	03.0	79.00.5	00.0
X Exit		-	Tetraphlereethylene	0.737	Scan	Target	164.0	127.10.4	00.0
		\mathbb{H}	Propage 1.3-dichloro-	8 961	Scan	Target	76.0	142-28-9	99.8
Manual Setup Tasks		\square	2-Hexanone	9.082	Scan	Target	58.0	591-78-6	99.6
Outlier Setup Tasks			Methane dibromochloro-	9 181	Scan	Target	129.0	124-48-1	99.6
Advanced Tasks			Ethane, 1.2-dibromo-	9.284	Scan	Target	109.0	106-93-4	99.7
Auvoliceu Tusks			Benzene, chloro-	9.787	Scan	Target	112.0	108-90-7	100.0
			Ethane, 1,1,1,2-tetrachloro-	9.875	Scan	Target	133.0	630-20-6	99.1
			Ethylbenzene	9.909	Scan	Target	91.0	100-41-4	100.0
			m+p-Xylene	10.028	Scan	Target	91.0	108-38-3	100.0
			o-Xylene	10.418	Scan	Target	91.0	<u>95-47-6</u>	100.0
			Styrene	10.431	Scan	Target	104.0	100-42-5	100.0
			Methane, tribromo-	10.600) Scan	Target	173.0	75-25-2	100.0
			Benzene, (1-methylethyl)-	10.791	Scan	Target	105.0	<u>98-82-8</u>	100.0
			p-Bromofluorobenzene	10.933	Scan	Target	174.0	460-00-4	100.0
			Benzene, bromo-	11.074	Scan	Target	158.0	<u>108-86-1</u>	100.0
			Ethane, 1,1,2,2-tetrachloro-	11.083	Scan	Target	83.0	<u>79-34-5</u>	100.0

Step 3: Creating Quantitative Analysis Method Add target deconvolution (optionally)

Agilent MassHunter Quantitative Analysis (for GCMS and LCMS) - Me	ethod - <c:\users\andriano\documents\2019 2_01-24-2019\<="" cal_try="" th="" volatiles_purge&trap\purge&trap=""></c:\users\andriano\documents\2019>
File Edit View Analyze Method Update Library Report Tools	Help
🛅 🗁 🛃 📭 💭 Analyze Batch 🔹 🕖 Layout: 🔜 🔢	🔠 🛄 \Lambda 📝 Restore Default Layout
Method Tasks	Method Table
New / Open Method	Target Deconvolution Setup
Workflow	Reference Library:
Target Deconvolution Setup	Setup Reference Library
Screening - GC	Library Method:
Screening - LC	C:\Users\andriano\Documents\2019 Volatiles_Purge&Trap\P&T UA lib method.uamethod.xml
Method Setup Tasks	Edit New Choose
Compound Setup	Spectrum Setup:
🖉 Globals Setup	Library Match Score Minimum
Save / Exit	Min Percent Purity
🔯 Validate	60
En Save	Alternative Peak Criteria
Save As	Deconvoluted Library Match Score 🔹
🔀 Exit	
Manual Setup Tasks	OK Cancel
Outlier Setup Tasks	
Advanced Tasks	Compound Information

Step 3: Creating Quantitative Analysis Method

Create calibration levels from the analyzed calibration standards

	Sample			
Name	Data File	Π	Туре	Level 🗠
blank_ISTD 5 ppb	blank_ISTD 5ppb.D	Τ	Blank	
0-5 ppb_ISTD 5 ppb	0-5 ppb_ISTD 5ppb.D	Π	Cal	0.5
0-25 ppb_ISTD 5 ppb	0-25 ppb_ISTD 5ppb.D	Π	Cal	0.25
1 ppb_ISTD 5 ppb	1 ppb_ISTD 5ppb,D	Π	Cal	1
5 ppb_ISTD 5 ppb	5 ppb_ISTD 5ppb.D		Cal	5
10 ppb_ISTD 5 ppb	10 ppb_ISTD 5ppb,D	Π	Cal	10
25 ppb_ISTD 5 ppb	25 ppb_ISTD 5ppb.D		Cal	25
50 ppb_ISTD 5 ppb	50 ppb_ISTD 5ppb.D		Cal	50

Step 3: Creating Quantitative Analysis Method

Create calibration levels from the analyzed calibration standards

		n z	Agilent MassHunter Quantitative Analysis (for	r GC	CMS and LCMS) - Method		<c:\users\andriano\d< th=""><th>ocuments\2</th><th>019 Volat</th><th>iles_Purge&Trap</th><th>\Purge&Trap Cal</th><th>_try 2_01-24-2019\0</th><th>QuantRe</th></c:\users\andriano\d<>	ocuments\2	019 Volat	iles_Purge&Trap	\Purge&Trap Cal	_try 2_01-24-2019\0	QuantRe
	c	F	ile Edit View Analyze Method Update	Libr	orary Report Tools Help	р							
			New	۱.	Layout: д 🖗		\Lambda 🕺 Restore	Default Layo	ut				
Name	Data		Open	r i	👻 🗙 Meth	od	Table						
blank_ISTD 5 ppb	blank_ISTD 5ppb		Append		Т	ïm	e Segment: 🖛 🛛 <all< td=""><td>></td><td>•</td><td>Compound:</td><td>Dichlorodiflu</td><td>or 🔻 🛋 🛛 Rese</td><td>et Table</td></all<>	>	•	Compound:	Dichlorodiflu	or 🔻 🛋 🛛 Rese	et Table
0-5 ppb ISTD 5 ppb	0-5 ppb ISTD 5p	3	Edit E10	f		Sar	nple						
0-25 ppb_ISTD 5 ppb	0-25 ppb_ISTD 5		Validata				Name	Data File		Туре	Level	Acq. Method F	ile Ad
1 pph ISTD 5 pph	1 pph JSTD 5pph		validate	-			1 ppb_ISTD 5 p 1	ppb_ISTD 5	op Cal		1	BFB_AA_RTL_	_u 1/2
F ask ICTD 5 ask	F and JCTD Fach	ョ	Save				Quantifier						
o ppp_ioi D o ppp	o ppp_ISTU oppp		Save As	H			Name	TS		Scan	Туре	CF	
10 ppb_ISTD 5 ppb	10 ppb_ISTD 5pp		Method Report				Dichlorodifluoro	1	Scan	Ta	arget	Linear	
25 ppb_ISTD 5 ppb	25 ppb_ISTD 5pp	×	Exit F11				Chloromethane	1	Scan	Ta	arget	Linear	
50 ppb_ISTD 5 ppb	50 ppb_ISTD 5pp	-		-			Ethene, chloro-	1	Scan	10 T	arget	Linear	
			Method Setup Tasks			ļ	Ethyl Chloride	1	Scan	T	arget	Linear	
			Manual Setup Tasks	•			Trichloromonoflu.	. 1	Scan	Ti	arget	Linear	
			Outlier Setup Tasks	•		ļ	Ethyl ether	1	Scan	Ta	arget	Linear	
			Advanced Tasks	۰ŀ			Ethene, 1,1-dichl.	. 1	Scan	Ta	arget	Linear	
				4		ļ	Acetone	1	Scan	Ta	arget	Linear	
			Swap Qualifier With Quantifier				Methane, iodo-	1	Scan	Ta	arget	Quadratic	
			Generate Qualifiers from Library - GC	H		 	Carbon disulfide	1	Scan	1	arget	Linear	
			Generate Qualifiers from Library - I C				Methylene chlori	1	Scan	T	arget	Linear	
			Concrate Quarters from Elonary - Ee	-			Acrylonitrile	1	Scan	T	arget	Linear	
			Copy Calibration Levels To	E		ļ	Ethylene, 1,2-dic.	. 1	Scan	T	arget	Linear	
	_		Average Calibration Replicates				Methyl tert-butyl	1	Scan	Ta	arget	Linear	
			Create Levels from Calibration Samples			ļ	Ethane, 1,1-dichl.	. 1	Scan	Ta	arget	Linear	
							Propane, 2,2-dic	1	Scan	Ti	arget	Linear	
			Import Calibration Levels from File			····	Ethylene, 1,2-dic.	. 1	Scan	Ta	arget	Linear	
		M	anual Setup Tasks				2-Butanone	1	Scan	Ti	arget	Linear	
		0	utlier Setup Tasks			·····	Propanenitrile	1	Scan	Ta	arget	Linear	
		A	dvanced Tasks		Com	pol	und Information						

Step 3: Creating Quantitative Analysis Method

Create calibration levels from the analyzed calibration standards

Qui	antifier						
	Name	TS		Scan	Туре	MZ	RT 🗠
Þ	Ethene, 1,1-dichl	1	Scan		Target	61.0	2.683
	Qualifier]		
	MZ	Rel.	Resp.	Uncertainty			
	9	6.0	66.3	100.0	1		
	9	8.0	41.3	100.0			
	6	3.0	32.6	100.0]		
	Calibration						
	Level	Co	nc. 🗠	Response			
	0.25		0.2500	2296			
	0.5		0.5000	5760			
	1		1.0000	11233			
	5		5.0000	54171			
	10		10.0000	103157			
	25		25.0000	262043			
i	50		50.0000	518953			

The method is ready to analyze calibration standards and samples

ICAL Review in MassHunter Quantitative Analysis 10.1

Initial Calibration (ICAL)

0.25–50 μg/L for 68 compounds (85%) 0.50–50 μg/L for 74 compounds (93%)

79 compounds out of 80 met the EPA criteria of less than 20% RSD with linear calibration

A quadratic fit with R² of 0.9963 was used for iodomethane

The %RSDs for the internal standard and surrogate compounds introduced by the AQUATek LVA were <5% RSD Table 4. ICAL for Method 524.2 From 0.25 to 50 µg/L.

		0.25 µg/L	0.5 µg/L	1 µg/L	5 µg/L	10 µg/L	25 µg/L	50 µg/L		
Compound	RT (min)	RRF	RRF	RRF	RRF	RRF	RRF	RRF	Avg RRF	%RSD
Fluorobenzene (ISTD)	6.613	ISTD	ISTD	ISTD	ISTD	ISTD	ISTD	ISTD	1.000	0.6
Dichlorodifluoromethane	1.207	0.087	0.150	0.178	0.136	0.157	0.153	0.153	0.145	19.6
Chloromethane	1.362	0.148	0.178	0.143	0.159	0.170	0.162	0.161	0.160	7.5
Chloroethene	1.462	0.244	0.182	0.212	0.180	0.191	0.183	0.184	0.196	12.0
Bromomethane	1.752				0.149	0.145	0.119	0.117	0.132	12.8
Ethyl Chloride	1.858	0.066	0.118	0.104	0.099	0.115	0.113	0.112	0.104	17.2
Trichloromonofluoromethane	2.120	0.299	0.353	0.342	0.337	0.334	0.337	0.336	0.334	5.0
Ethyl Ether	2.466	0.062	0.096	0.115	0.099	0.105	0.105	0.106	0.098	17.4
1,1-Dichloroethene	2.683	0.223	0.280	0.274	0.262	0.252	0.255	0.250	0.257	7.3
Acetone	2.793				0.021	0.022	0.020	0.020	0.021	5.1
lodomethane	2.841	0.186	0.160	0.177	0.171	0.209	0.275	0.297	0.211	0.9963*
Carbon Disulfide	2.907	0.603	0.515	0.516	0.477	0.489	0.483	0.489	0.510	8.5
Allyl Chloride	3.145	0.074	0.089	0.071	0.091	0.099	0.089	0.089	0.086	11.8
Methylene Chloride	3.310	0.225	0.182	0.178	0.179	0.174	0.171	0.171	0.183	10.5

Method Detection Limits (MDLs)

<0.10 µg/L for 58 compounds (73%) <0.15 µg/L for 66 compounds (83%)

8 trials at 0.25 $\mu g/L$ for 66 compounds

For the compounds with higher reporting limits – 8 trials at 0.5 and 1 μ g/L

 $MDL = s \times t_{(n-1, 1 - alpha = 99)} = s \times 2.998$

Table 5. Calculated MDLs for VOCs.

MDLs in pg level

1.2	Method detection limits (MDLs) (3) are compound, instrument and especially matrix
	dependent and vary from approximately 0.02 to 1.6 µg/L.

		Calculated Concentration in the Sample (µg/L)							Average				
Compound	RT (min)	Spike (µg/L)	Samp. 1	Samp. 2	Samp. 3	Samp. 4	Samp. 5	Samp. 6	Samp. 7	Samp. 8	concentration (µg/L)	SD	MDL
Fluorobenzene (ISTD)	6.613	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00	N/A	N/A
Dichlorodifluoromethane	1.207	0.25	0.23	0.24	0.24	0.24	0.26	0.22	0.24	0.23	0.24	0.010	0.031
Chloromethane	1.362	0.25	0.26	0.26	0.25	0.24	0.23	0.29	0.25	0.26	0.26	0.017	0.052
Chloroethene	1.462	0.25	0.17	0.17	0.14	0.14	0.18	0.15	0.16	0.19	0.16	0.017	0.051
Bromomethane	1.752	1.00	0.88	1.03	0.90	0.91	0.78	0.74	0.75	0.97	0.87	0.106	0.316
Ethyl Chloride	1.858	0.25	0.36	0.34	0.29	0.35	0.29	0.38	0.37	0.37	0.34	0.035	0.103
Trichloromonofluoromethane	2.120	0.25	0.25	0.24	0.18	0.23	0.18	0.26	0.20	0.21	0.22	0.030	0.091
Ethyl Ether	2.466	0.25	0.28	0.21	0.29	0.27	0.33	0.23	0.27	0.30	0.27	0.038	0.114
1,1-Dichloroethene	2.683	0.25	0.24	0.24	0.27	0.23	0.24	0.21	0.24	0.25	0.24	0.019	0.057
Acetone	2.793	1.00	1.04	1.21	1.51	1.33	1.37	1.25	1.03	1.08	1.23	0.173	0.518

MDLs for Gases

$$MDL = S \times t_{(n-1, 1 - alpha = 99)} = S \times 2.998$$

 Table 5. Calculated MDLs for VOCs.

Compound	RT (min)	concentration (µg/L)	SD	MDL
Dichlorodifluoromethane	1.207	0.24	0.010	0.031
Chloromethane	1.362	0.26	0.017	0.052
Chloroethene	1.462	0.16	0.017	0.051
Bromomethane	1.752	0.87	0.106	0.316
Ethyl Chloride	1.858	0.34	0.035	0.103
Trichloromonofluoromethane	2.120	0.22	0.030	0.091
	Compound Dichlorodifluoromethane Chloromethane Chloroethene Bromomethane Ethyl Chloride Trichloromonofluoromethane	Compound(min)Dichlorodifluoromethane1.207Chloromethane1.362Chloroethene1.462Bromomethane1.752Ethyl Chloride1.858Trichloromonofluoromethane2.120	Compound(min)(µg/L)Dichlorodifluoromethane1.2070.24Chloromethane1.3620.26Chloroethene1.4620.16Bromomethane1.7520.87Ethyl Chloride1.8580.34Trichloromonofluoromethane2.1200.22	Compound (min) (μg/L) SD Dichlorodifluoromethane 1.207 0.24 0.010 Chloromethane 1.362 0.26 0.017 Chloroethene 1.462 0.16 0.017 Bromomethane 1.752 0.87 0.106 Ethyl Chloride 1.858 0.34 0.035 Trichloromonofluoromethane 2.120 0.22 0.030

Tested tap water sample from Eastern Pennsylvania: MassHunter Quantitative Analysis

29

Tested tap water sample from Eastern Pennsylvania: MassHunter Quantitative Analysis

Tested tap water sample from Eastern Pennsylvania: MassHunter Unknowns Analysis

VOCs found:

DE44392.4102199074

Agilent

Trichloromonofluoromethane Found in a Tap Water Sample from Eastern Pennsylvania: Review in Unknowns Analysis

Trichloromonofluoromethane Found in a Tap Water Sample from Eastern Pennsylvania: Review in Unknowns Analysis

VOCs found in a tap water sample from four sources in Pennsylvania

		Concentration (µg/L)						
Compound	RT (min)	Southern Pennsylvania	Eastern Pennsylvania	Southeastern Pennsylavania	City of Philadelphia			
Trichloromonofluoromethane	2.120		0.30					
Trichloromethane (Chloroform)	5.640	1.05	7.15	12.56	14.06			
Bromodichloromethane	7.568		5.15	4.81	5.77			
Toluene	8.380	0.29						
Tetrachloroethylene	8.933		0.36					
Dibromochloromethane	9.181		4.49	1.03	1.44			
Tribromomethane	10.600		1.26					

Summary

The software tools offer simple and rapid means to streamline quantitation method development, data processing, and reporting for the EPA 524.2 Method via:

- Built-in software tools for BFB tune check evaluation
- Creating user library of VOCs with deconvoluted spectra and retention times
- Creating a quantitation method from the user spectral library
- Analysis of the real-world samples using spectral deconvolution

ICAL was performed over the range of 0.25 to 50 μ g/L

Several VOCs were identified and quantified in **real world tap water samples** at concentrations varying over the range of 0.3 to 14.1 μ g/ L, in many cases much lower than current EPA 524.2 MCLs

EPA Method 524.2 with Agilent 8860/5977B

Application note 5994-0833EN

- Demonstrated applicability of an Agilent 8860/5977B GC/MSD system coupled with a Teledyne Tekmar Lumin purge and trap (P&T) concentrator, and an AQUATek LVA (liquid vial autosampler)
- ICAL range 0.25–50 µg/L
- MDLs in ppt levels
- Deconvoluted spectra for compound identification
- Several VOCs were identified and quantified in real-world drinking water samples

Authors Bruce D. Quimby and Anastasia A. Andrianova Agilent Technologies, Inc.

Application Note

Environmental

Abstract

An Agilent 8860/5977B GO/MSD system coupled with a Teledyne Tekmar Lumin purge and trap (P&T) concentrator and an AQUATek liquid vial autosampler (LVA) was successfully used for the analysis of volatile organic compounds (VOCs) to the requirements of United States Environmental Protection Agency (US EPA) method 524.2. The analysis of VOCs in water following this or similar methods are widely used around the world as part of insuring the safety of potable water supplies.

US EPA Method 524.2: Successful Measurement of Purgeable Organic Compounds in Drinking Water by Agilent 8860/5977B GC/MSD

Agilent

usted Answers

Thank you!