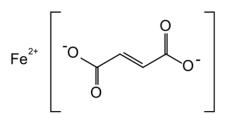


Inorganic & Organic Certified Reference Materials

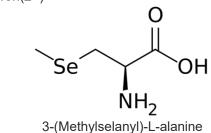
Transitioning Arsenic Speciation Analysis from the Inorganic to the Organic Laboratory: Novel Methods for Separation of Inorganic and Organic Arsenic Species by LCMS

Patricia Atkins Applications Scientist, SPEX CertiPrep Dr. M. Totleben LCMS Scientist, SPEX CertiPrep

What is Speciation? & Why is it Important?

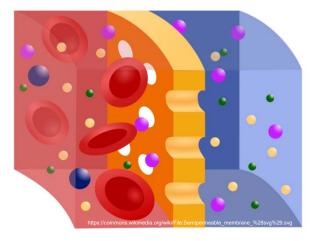

Inorganic & Organic Certified Reference Materials

IUPAC Definition of Speciation:


Distribution of an element amongst defined chemical species in a system.

- Isotopic composition
- Electronic or oxidation state
- Molecular structure
- Biological Activity
 - Nutrition:
 - Some Fe forms higher bioavailability as nutrient
 - Disease treatment:
 - Organoselenium compounds scavenge free radicals & prohibit tumor growth
 - Toxicity:
 - Generally, Organometallics > toxic than Inorganic or Elemental forms (except As)

z	Element	Negative Oxidation States					Positive Oxidation States					
24	Cr	-4		-2	-1	0	1	2	3	4	5	6
33	As		-3	-2	-1	0	1	2	3	4	5	
34	Se			-2	-1	0	1	2	3	4	5	6
48	Cd			-2		0	1	2				
80	Hg			-2		0	1	2		4		
82	Pb	-4		-2	-1	0	1	2	3	4		



(E)-But-2-enedioate; iron(2+)

Metal Toxicity

- Species Toxicity effected by:
 - Absorption:
 - Binding to an to unabsorbable constituent reduces bioavailability & toxicity
 - Distribution:
 - Inability to cross biological barriers (i.e. blood/brain, intestines) reduces bioavailability & toxicity
 - Biotransformation:
 - accumulation, modification and excretion from tissues
- Traditional metal species of concern:
 - Pb, Cd, Hg, As, Cr
 - Usually, Organic forms > toxic than Inorganic
- Arsenic (As) exception
 - Inorganic Species = higher toxicity

SPEX CertiPrer

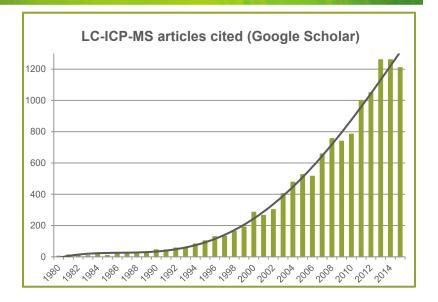
Arsenic Species		LD ₅₀ (mg/kg)
Arsenite	As (III)	14
Arsenate	As (V)	20
Arsine	AsH3	3
Monomethylarsonic Acid	MMA	700 - 1800
Dimethylarsinic Acid	DMA	700 - 2600
Arsenocholine		> 10000
Arsenobetaine		> 10000

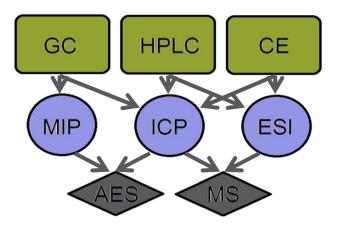
Why are we slow to adapt to Speciation?

SPEX CertiPrep.

Inorganic & Organic Certified Reference Materials

- Difficult Sampling Collection & Preservation
 - Distribution must be preserved or in-situ analysis
 - Effects of Collection & Preservation
 - o Acidification or additions (\triangle pH)
 - o Microbial activity
 - Time: redox reactions due Δ O₂ saturation
 - o Temperature
 - o Volatility
 - o Absorption into/through container
 - Contamination from container
- Difficult Sample Preparation
 - Extraction: (methylation of Hg from sediments)
 - Heat
 - Oxidizers
 - Derivatization:
 - Methyl-Hg & Ethyl-Hg formed in derivatization rxn between Inorganic Hg & Na tetra(npropyl)borate


Material	Total # of Elements	Total ppm	Major Impurities
PS	8	4	Na, Ti, Al
Teflon-TFE	24	19	Ca, Pb, Fe, Cu
LDPE	18	23	Ca, Ti, Zn
PC	10	85	CI, Br, Al
PMP	14	178	Ca, Mg, Zn
Teflon-FEP	25	241	K, Ca, Mg
Borosilicate Glass	14	497	Si, B, Na
PP	21	519	Cl, Mg, Ca
HDPE	22	654	Ca, Zn, Si


© SPEX CertiPrep, Inc. 2020

Why are we slow to adapt to Speciation?

SPEX CertiPrep.

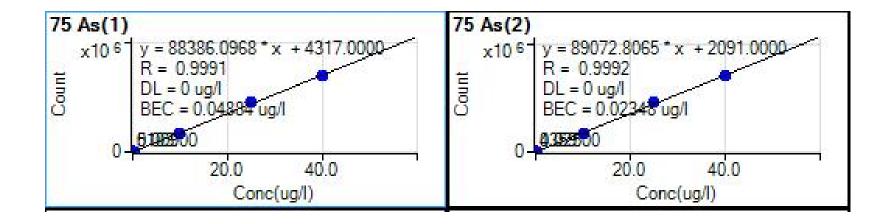
- Specialized analysis: Hyphenated technologies
 - LC-ICP-MS most common analysis
 - Other analysis: CE, GC etc.
- Analysis can change or inaccurately quantitate distribution
 - Chromatographic Separation
 - Co-elution or loss of species to void volume
 - Column yield should be checked by mass balance with total element concentration
 - Techniques causes distribution changes
 - HPLC: Sb & As species transform via oxygen in the mobile phase & interaction of species with the mobile phase
 - GC: Phenyl mercury salts to Diphenyl mercury
 - ESI-MS: redox reactions at ESI source

Why are we slow to adapt to Speciation?

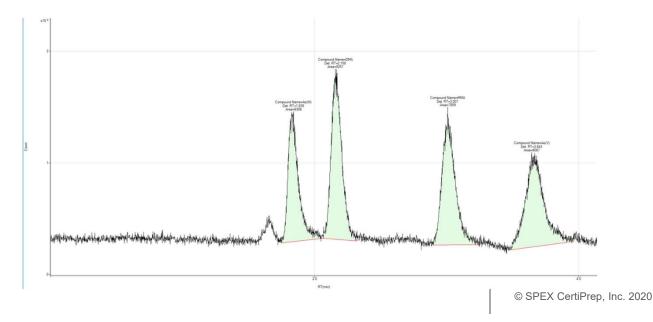
SPEX CertiPrep.

- Limited number of clear directives, regulations and procedures
 - Most regulations concern organotin & Cr (VI)
 - New regulations for pharmaceuticals
 - Some regulations drinking water regulations
- Lack or limited reference materials
 - Chemical species distribution must be
 - Stable: validated stability
 - Homogeneous
 - Short-term & Long-term must be validated
 - Changes in temperature, time, pH, other elements can effect distribution
 - Specialized equipment for analysis
 - New methods need development & validation

Inorganics Instrumentation: Start

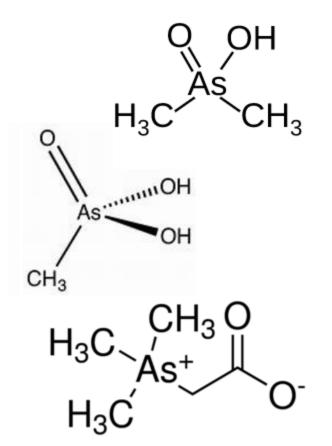


- HPLC: Agilent 1260 Series HPLC
 - Proprietary Method
- ICP-MS: Agilent 7500
 - RF power: 1550
 - Carrier gas flow rate: 1.05 ml/min
 - Plasma gas flow rate: 15 ml/min
 - Auxiliary gas flow rate: 0 ml/min
 - Nebulizer: Micro Mist
 - Spray Chamber: 2 C
 - Interface cones: Nickle Cones
 - Integration Time: 0.5 seconds


As Calibration

Inorganic Speciation of Arsenic

Full Time Range EIC(75) : S28.D As 3+ As 5+ Retention Time=1.544 Retention Time=3.923 4.0 RT(min)



Inorganic & Organic Certified Reference Materials

SPEX CertiPrep.

MMA/DMA

- Organic arsenic species; not as clearly separated
 - Dimethyl arsenic acid (DMA)
 - Monomethyl arsenic acid (MMA)
 - -Arsenobetaine
 - -Arsenocholine
 - Many other As species
- Not well characterized with LC-ICP-MS

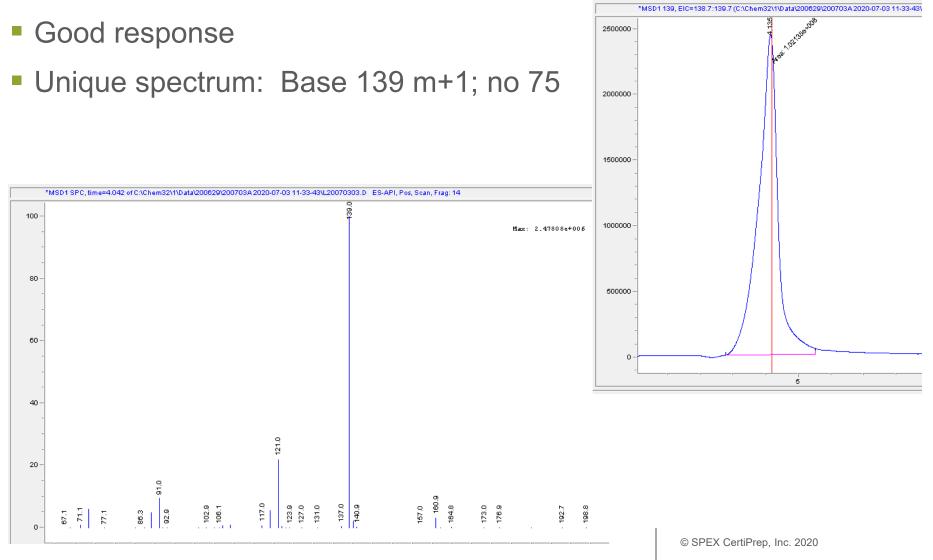
SPEX CertiPres

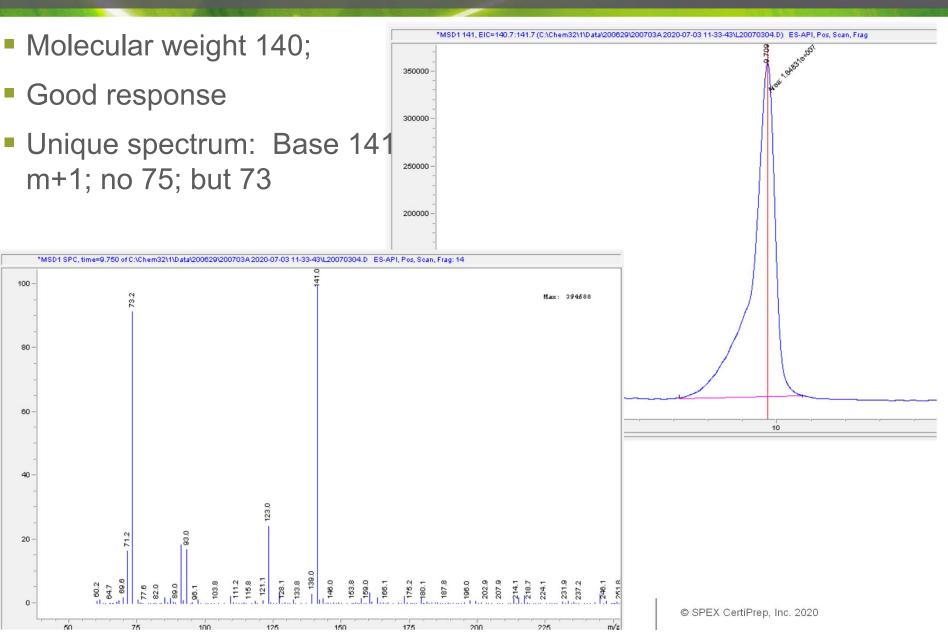
Change to LCMS system

- Project and product changes forced decommission of LC-ICP-MS
 - Arsenic species standards discontinued
- Continued need for organic arsenic species standards with arsenic impurities
 - Food Industry
 - SPEX Certiprep study: As in Cider
 - Water
- Project started to convert to LCMS

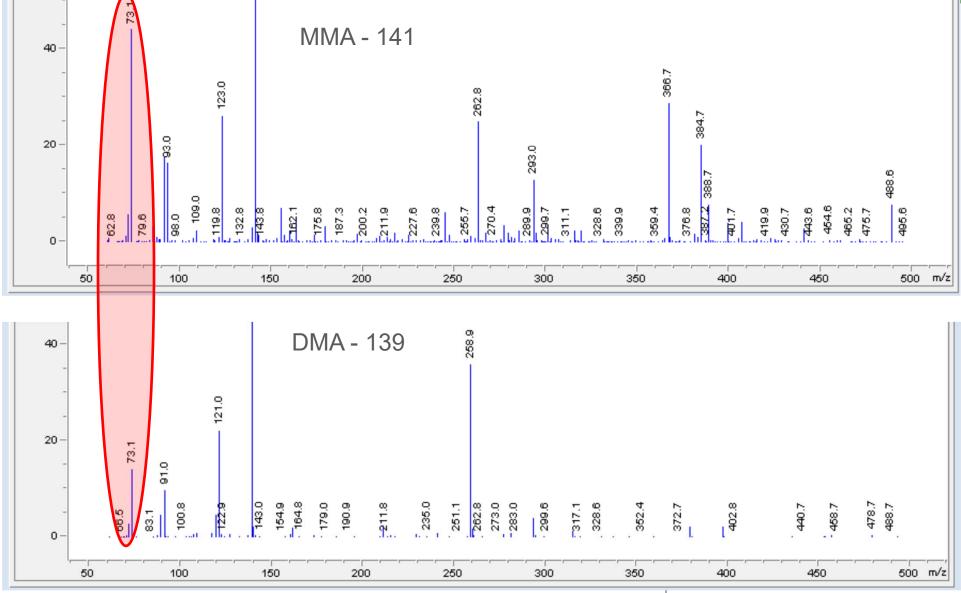
SPEX CertiPrep.

Instrumentation


- HPLC: Agilent 1260 Series HPLC
 - Method develop in progress
 - Columns being tested
 - Speciation column
 - » 80% WATER/20% ACN + 0.05% F/ ISOCRATIC
 - C18
 - HILIC
- HPLC-MS: Agilent LCMS
 - MS Detector Settings:
 - Fragmentor 140
 - Drying Gas Flow 12 L/min
 - Capillary Voltage 1500
- Flow injection analysis to optimize ionization for LCMS ESI


DMA

Molecular weight 138; not just 75 for Arsenic

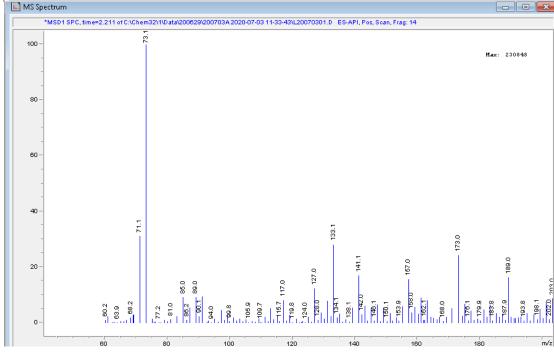


MMA

Inorganic & Organic Certified Reference Materials

SPEX CertiPrep.

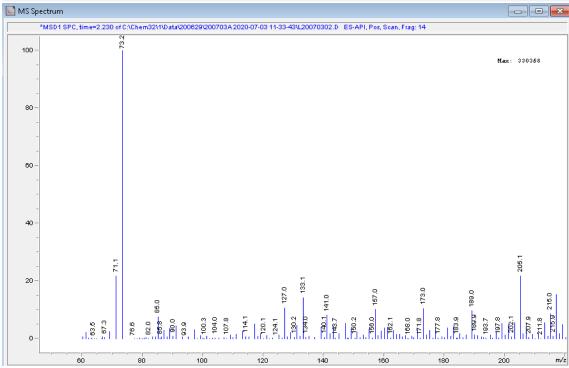
DMA vs. MMA


SPEX CertiPrep.

Inorganic & Organic Certified Reference Materials

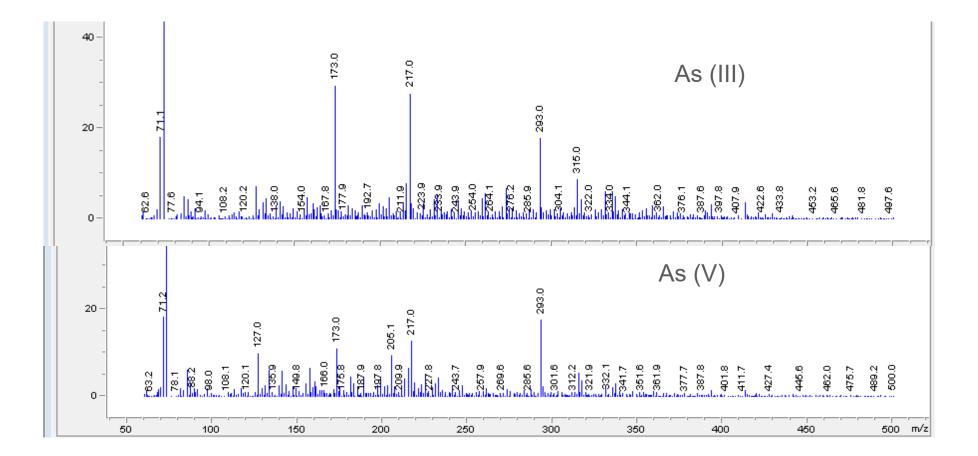
© SPEX CertiPrep, Inc. 2020

SPEX CertiPrep.

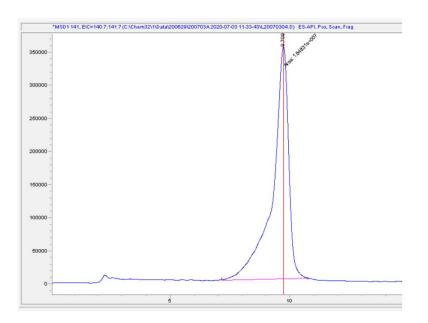


- Molecular wt: 75
- Good response; but unretained
- Unique spectrum: 73

SPEX CertiPrep.



- Molecular wt: 75
- Good response; but unretained
- Unique spectrum: 73



As (III) & As (V) spectrums

- One question was to find if MMA had DMA, As III and As V impurities and vice versa.
- Current work shows little to no impurities interference
 - Some small spectral overlaps to investigate but no significant EIC at current retention times.

- Column and mobile phase changes to push for inorganic retentions
- Clean up spectrum to use for quantitation and ID
- Reintroduction of DMA and MMA standards with certified impurities

Inorganic & Organic Certified Reference Materials

Thank You! Visit us online at www.spexcertiprep.com View our webinars on our **Utube Channel**