

Generation and Evaluation of Reference Samples as part of an Evacuated Canister Interlaboratory Study

Dru A. Burns and Ryan F. LeBouf
Respiratory Health Division
CDC/NIOSH

Study Description

- NIOSH Manual of Analytical Methods 3900
- Evacuated Canister
 Interlaboratory Study
 - ASTM Internationals
- 17 volatile organic compounds (VOCs)
 - Two concentration ranges
 - Three levels per range
 - 5, 10, & 15 PPB
 - 0.8, 1.3, & 1.7 PPM

Volatile Organic Compounds, C1 to C10, Canister Method

3900

 Formula: Table 1
 MW: Table 1
 CAS: Table 1
 RTECS: Table 1

 METHOD: 3900, Issue 1
 EVALUATION: FULL
 Issue 1: 30 August 2018

OSHA: Table 3

NIOSH REL: Table 3

Other OELs: [1-3]

ANALYTES: ethanol, 2-propanol, acetone, 2,3-butanedione, 2,3-pentanedione, 2,3-hexanedione, dichloromethane, trichloromethane, hexane, benzene, toluene, ethylbenzene, ο-xylene, m.p-xylene, methyl methacrylate, α-pinene, d-limoner

SAMPLING		MEASUREMENT		
SAMPLER:	FUSED-SILICA LINED STAINLESS STEEL CANISTER, 6 L, 450, or 400 mL	TECHNIQUE:	GAS CHROMATOGRAPHY, MASS SPECTROMETRY	
FLOW RATE:	0.06 to 50 mL/min. See SAMPLING section	ANALYTE:	Compounds listed in Table 1	
VOL-MIN: SHIPMENT:	Depends on canister volume. See SAMPLING section Routine	PRECONCENTRATION VOLUME: 25 to 500 mL injection (ppb- levels) for a 6L carister, 25 to 250 mL injection (ppb-levels) for a 400/450 mL carister, 1 mL loop (ppm-levels)		
SAMPLE			, , , , , , , , , , , , , , , , , , , ,	
STABILITY:	58 days @ 25 °C (30 days for ethanol, 2-propanol, and acetone @ 10 ppb; 21 days for α-pinene and d-limonene @ 0.8 ppm)	PRECONCENTRATION CONDITIONS: Module 1 (empty): Focused @ -20° C, desorbed @ 10° C, bak @ 150° C / 7 min; Module 2 (glass beads) Focused @ -80° C, desorbed @ 180° C, baked @ 150° C; Module 3 (focuser):		
BLANKS:	1 field blank per set			
	ACCURACY		Focused @ -150° C.	
RANGE STUDIED:	Tables 4a and 4b	GC/MS CONDITIONS:	Injection: preconcentrator transfer line 100°C Detector: 280° C	
BIAS:	Tables 4a and 4b		Column: 35° C (2 min hold) to 170° C (ramp 8°C/min), ramp 20° C/min to 220° C (3 min hold)	
OVERALL			MS Source: 230° C	
PRECISION (\hat{S}_{rT}): Tables 4a and 4b			Quadrupole: 150° C	
ACCURACY:	Tables 4a and 4b		Solvent delay: 4.5 min MS Scan: 35-350 amu	
		CARRIER GAS: Helium, 1 mL/min		
			Capillary, fused silica, 60 m x 0.32-mm ID; 1- µm film 100% dimethylpolysiloxane	
		CALIBRATION:	Gas phase analytes in canisters	
		RANGE:	Tables 4a and 4b	
		ESTIMATED LO	OD: Tables 4a and 4b	
		PRECISION (S,	;): Tables 4a and 4b	

APPLICABILITY: The method was developed for measuring a range of volatile organic compounds in healthcare settings [4], but may be used in other occupational settings. The method was developed to measure the following analytes: ethanol, acetone, 2-ropanol, dichloromethane, hexane, trichloromethane, 2,3-butanedione, 2,3-pentanedione, and 2,3-hexanedione, benzene, methyl methacylate, toluene, ethylbenzene, mp-sylene, o-sylene, o-priene, and d-limonene. The working range is 0.24 to 22 ppb

Traditional VOC Sampling Methods

Sorbent Tubes

- Rely on adsorption
- Active sampling methods
- Have analyte specificity
- Collect small sample sizes
- Can require cold storage
- Require solvent desorption

Thermal Desorption Tubes

 Lack back-up section to test for breakthrough

Evacuated Canisters Advantages

- Passive sampling method
- Collect whole air sample
- Capable of multiple sample analyses
- Do not require cold storage
- No solvent desorption
- Have 21-58 day storage stability
 - Analyte dependence

Canister Limitations

Wall Losses

- VOCs can adsorb to active sites
- Can reduce with fused-silica lining

High humidity conditions

Dissolution of VOCs in water

Cost

- Expensive instruments and consumables such as liquid nitrogen
- Certain classes of compounds are not amenable

Tested Canisters with Volatile Organic Compounds (VOCs)

- Vapor Pressure > 0.1 mmHg at 25°C
- Health Effects, Pollution, Compliance
- 14 VOCs Healthcare Setting
 - Cleaning Products, Bioaerosols, Asthmagenic
- 3 VOCs Alpha-Diketones
 - Obliterative Bronchiolitis
 - Fibrosis and obstruction of airways

Suite of 17 VOCs

Ethanol	Acetone	2-Propanol	
Methylene Chloride	<i>n</i> -Hexane	2,3-Butanedione	
Chloroform	Benzene 2,3-Pentanedio		
Methyl Methacrylate	Toluene 2,3-Hexanedion		
Ethylbenzene	<i>m,p</i> -Xylene	<i>o</i> -Xylene	
a-Pinene	<i>d</i> -Limonene		

Sample Preparation Methods

3 Total Preparation Methods

- PPB range
 - Flow method
 - Pressure transfer method
- PPM range
 - Pressure transfer method
 - Manifold method

Flow Method

- PPB range samples only
- Mixture of 2 streams of gas
 - Certified gas standard of 17 VOCs at 2 PPM
 - Ultra-high purity (UHP) nitrogen

Entech 4600

Pressure Transfer Method

- PPB and PPM range samples
- Certified gas standard pressure diluted by UHP nitrogen into 6L canister at nominal concentration level
- Pressure transferred from 6L canister to multiple 450 cc canisters

Manifold Method

- PPM range only
- Multiple 450 cc canisters generated in parallel via pressure dilution using Entech 4700.

11

Sample Counts by Preparation Method

Preparation Method	Manifold	Pressure	Pressure	Flow
Concentration Range	PPM	PPM	PPB	PPB
Canister N	63	18	18	54

Sample Analyses

Three Methods

- Part Per Billion
 - No dilution
 - 250 cc injection volume cryogenically pre-concentrated
 - 72 samples
- Diluted Part Per Million
 - Can to can dilution using Entech 4700
 - 250 cc injection volume cryogenically pre-concentrated
 - 63 samples
- Loop Part Per Million
 - 1 cc volume sample loop
 - no pre-concentration

NIOSH Accuracy Criterion

- Accuracy
 - +/- 25% error
 - Bias and precision
- 95% Confidence interval (CI) on accuracy
 - UCL must be below 25% error to pass
 - CI encompassing 25% error is inconclusive
 - LCL above 25% error is failure

Conclusions

- 15 of the 17 VOCs in the PPB-range passed the NIOSH Accuracy and 95% CI criterion when samples were produced by pressure transfer method.
- All 17 VOCs in the PPM-range passed the NIOSH Accuracy and 95% CI criterion when samples were produced by pressure transfer method and were analyzed via the loop injection method.

Takeaways

- 1. Method performance dependent on concentration (PPB or PPM)
- 2. Pressure transfers better for standard/spike canister generation
- 3. Loop injection sometimes better than pressure dilutions
- 4. NMAM 3900 Volatile Organic Compounds, C1 to C10, Canister Method
 - https://www.cdc.gov/niosh/nmam/pdf/3900.pdf

Questions?

- Contact information
 - Dru A. Burns
 - DABurns@cdc.gov
 - Ryan F. LeBouf
 - RLeBouf@cdc.gov

For more information, contact CDC 1-800-CDC-INFO (232-4636) TTY: 1-888-232-6348 www.cdc.gov

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

Selected References

- EPA. (1999). Compendium Method TO-15: Determination of Volatile Organic Compounds (VOCs) in Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS) (Second ed.). Cincinnati, OH.
- Harber, P., Saechao, K., & Boomus, C. (2006). Bronchiolitis Obliterans Diacetyl-induced lung disease. Toxicological reviews, 25(4), 261-272.
- Harper, M. (2000). Sorbent trapping of volatile organic compounds from air. *Journal of Chromatography A, 885*, 129–151.
- Kennedy, E. R., Fischbach, T. J., Song, R., Eller, P. M., & Shulman, S. A. (1995). Guidelines for Air Sampling and Analytical Method Development and Evaluation, 95-117.
- LeBouf, R. F., Stefaniak, A. B., & Virji, M. A. (2012). Validation of evacuated canisters for sampling volatile organic compounds in healthcare settings. *J Environ Monit*, 14(3), 977-983
- LeBouf, R., Virji, M. A., Saito, R., Henneberger, P., Simcox, N., & Stefaniak, A. (2014). Exposure to volatile organic compounds in healthcare settings. Occupational and Environmental Medicine, 71(9), 642-650
- Ochiai, N., Daishima, S., & Cardin, D. (2003). Long-term measurement of volatile organic compounds in ambient air by canister-based one-week sampling method. *Journal of Environmental Monitoring*, 5(6), 997-1003.
- Ochiai, N., Tsuji, A., Nakamura, N., Daishima, S., & Cardin, D. B. Stabilities of 58 volatile organic compounds in fused-silica-lined and SUMMA polished canisters under various humidified conditions. Journal of Environmental Monitoring, 4(6), 879-889.