

Understanding Per- and Polyfluoroalkyl Substances (PFAS) in Air

Environmental Measurement Symposium / National Environmental Monitoring Conference – August 4, 2020

Lara P. Phelps

Director, Air Methods and Characterization Division, Center for Environmental Measurement and Modeling
US EPA Office of Research and Development

Presentation Overview

- General Background
- Air Research
 - Methods Development
 - Dispersion Modeling
 - Thermal Treatment
- Planned Products

General Background

- Per- and polyfluoroalkyl substances (PFAS) are a group of man-made chemicals that have been in use since the 1940s, found in a wide array of consumer products and facilities
- Most people have been exposed to PFAS. Some PFAS chemicals can accumulate and stay in the human body for long periods of time
- There is evidence that exposure to certain PFAS may lead to adverse health effects
- PFAS is an issue of high and growing concern for EPA customers and the public, and so EPA is committed to taking action to address public concerns

Per- & Polyfluoroalkyl Substances (PFAS)

- A class of man-made chemicals
 - Chains of carbon (C) atoms surrounded by fluorine (F) atoms, with different terminal ends
 - Complicated chemistry thousands of different variations exist in commerce
 - Widely used in industrial processes and in consumer products
 - Some PFAS are known to be PBT:
 - **Persistent** in the environment
 - Bioaccumulative in organisms
 - **Toxic** at relatively low (ppt) levels

Thousands of chemicals can become air sources during production, use, and disposal of PFAS-contaminated materials

Known Sources of PFAS in the Environment

- Direct release of PFAS or PFAS products into the environment
 - Use of aqueous film forming foam (AFFF) in training and emergency response
 - Industrial facilities
 - Incineration/thermal treatment facilities
- Landfills and leachates from disposal of consumer and industrial products containing PFAS
- Wastewater treatment effluent and land application of biosolids

Air Emissions Contribute to PFAS Concentrations

Adapted from: Davis, K. et al. Chemosphere, 2007.

EPA PFAS Air-Related Research

- Analytical Methods to detect, identify, quantify PFAS in emissions and ambient air
- Dispersion Modeling to predict air transport and deposition associated with air sources
- Effectiveness of Thermal Treatments for destroying PFAS materials

Emission Measurement Considerations

- Emission sources are diverse:
 - PFAS chemical manufacturers
 - PFAS used in commercial applications
 - PFAS emitted during thermal treatment of waste (e.g., AFFF, biosolids, municipal)
 - Products of Incomplete Combustion (PICs)
- Process can alter emission composition
- Validated source and ambient air methods for PFAS do not exist, but some research methods are available
- Current emissions tests often target only a small number of PFAS compounds for analysis while significantly more may be present
- Emissions measurements are needed for source characterization
- Emissions measurements are needed for control technology evaluation

Example Coating Process

Source Methods Development

No Validated (Only Research) Methods for PFAS Emissions

- Considering both sampling and analysis methods, targeted and non-targeted
- Diverse sources chemical manufacturers, commercial applications, thermal treatment incineration processes
- Methods needed for source characterization and for control technology evaluation

Method Development Details

- Semi/Non-Volatiles Performance-based, Modified Method 5 train

 (i.e., Other Test Method [OTM] 45) approach using isotope dilution, GC/MS targeted and non-targeted analysis. For Modified Method 5, see:
 https://www.epa.gov/hw-sw846/sw-846-test-method-0010-modified-method-5-sampling-train
- Volatiles Modified TO-15 using SUMMA canisters, GC/MS targeted and non-targeted analysis.
 See https://www3.epa.gov/ttnamti1/airtox.html for methods.
- Surrogate Indicators Measure PFAS as a class, e.g., Total Organic Fluorine (TOF)

Ambient Methods Development

No Validated (Only Research) Methods for Ambient Air

- Considering both sampling and analysis methods, targeted, and non-targeted
- Applications include fenceline monitoring for fugitive emissions, deposition, and receptor exposure

Method Development Details

- Ambient/Near-Source Field deployable Time of Flight/Chemical Ionization Mass Spectrometer for real time detection/measurement
- Semivolatile PFAS Performance Based following guidance in EPA TO-13a
- Volatile PFAS SUMMA canisters, sorbent traps, GC/MS targeted, and non-targeted analysis

Non-targeted Analysis

- High resolution mass spectrometry
- Software calculates exact number and type of atoms needed to achieve measured mass, e.g. C₃HF₅O₃
- Software and fragmentation inform most likely structure
- With mass, formula, structure known, potential identities determined by database search

Molecular Formula: C₃HF₅O₃
Monoisotopic Mass: 179.984585 Da
IM-HI-: 178.977308 Da

Source: Strynar et al. 2015; Sun et al. 2016

Thermal Treatment of PFAS

- Highly electronegative fluorine makes C-F bonds particularly strong, require high temperatures for destruction
 - Unimolecular thermal destruction calculations suggest that CF₄ requires 1,440 °C for >1 second to achieve 99.99% destruction (Tsang et al., 1998)
 - Sufficient temperatures, times, and turbulence are required
- Functional group relatively easy to remove/oxidize
 - Low temperature decarboxylation is an example
 - Information regarding potential products of incomplete combustion (PICs) is lacking

Products of Incomplete Combustion (PICs)

- When formed in flames, F radicals quickly terminate chain branching reactions to act as an extremely efficient flame retardant, inhibiting flame propagation
- PICs are more likely formed with F radicals than other halogens such as CI
- PICs may be larger or smaller than the original fluorinated Principal Organic Hazardous Constituents (POHC) of concern
 - CF₂ radicals preferred and relatively stable, suggesting the possibility of reforming fluorinated alkyl chains
 - Remaining C-F fragments may recombine to produce a wide variety of fluorinated PICs with no analytical method or calibration standards
 - May result in adequate PFAS destruction but unmeasured and unquantified PICs
- Very little information is published on PFAS destruction
 - Fluorine chemistry sufficiently different than CI that we cannot extrapolate
 - Analytical methods and PFAS standards are lacking
 - Measurements focusing on POHC destruction may miss the formation of PICs
- Hazardous waste incinerators and cement kilns may well be effective, but what about municipal waste combustors and sewage sludge incinerators (i.e., lower temperatures)?

Incinerability & Mitigation Research

- Explore minimum conditions (temperature, time, fuel H₂) for adequate PFAS destruction
- Investigate relative difficulties in removing PFAS functional groups (POHC destruction) vs. full defluorination (PIC destruction)
- Effects of incineration conditions (temperature, time, and H₂) on PIC emissions
- Examine relative differences in the incinerability of fluorinated and well studied corresponding chlorinated alkyl species

CFS Software for EPA

Reaction Engineering International (REI)

- The Configured Fireside Simulator (CFS)
 - Developed for the Department of Defense to evaluate operations of the chemical demilitarization incinerators processing the US chemical warfare agent stockpile
- Destruction kinetics developed
- Adapted to provide for the ability to run "what if" scenarios of waste streams contaminated with chemical and biological warfare agents
 - EPA's pilot-scale Rotary Kiln Incinerator Simulator (RKIS)
 - Three commercial incinerators based on design criteria for actual operating facilities
 - Medical/Pathological Waste Incinerator
 - Hazardous Waste Burning Rotary Kiln
 - Waste-to-Energy Stoker type combustor
- CFS uses chemical kinetic data for destruction derived from bench- and pilotscale experiments at EPA's Research Triangle Park, NC facility

Bench-scale Incineration Experiments

- Repurpose existing equipment (i.e., formerly used for oxy-coal)
- Small scale (L/min & g/min)
- Full control of post-flame temperature & time (2-3 sec)
- Able to add either gas or liquid PFAS through or bypassing flame
- Premixed or diffusion flames possible
- Platform for measurement methods development (e.g., SUMMA, sorbent, total F, GC/ECD, real-time instruments)

Tube Furnace Experiments

Experimental Setup

- Thermal treatment with calcium oxide (CaO) from 250 to 800 °C
- Observe destruction of parent compound using two techniques: CIMS and sorbent tube analysis by TD-GC/MS
- TD-GC/MS analyses show the presence of degradation products from FTOH destruction

PFAS Fluorotelomer Alcohols Tested:

String Reactor Experiments

New experiment that simulates industrial PFAS coating facilities

- Built from 3 existing furnaces
- Applies commercial dispersions to fiber (string)
- Full control of flows, times, temperatures, application rates
- Small scale (L/min & g/min)
- Located in lab w/ real-time instruments

Investigates key research questions:

- What PFAS & additives are present in different commercial dispersions?
- What PFAS (and other species) are vaporized during application processes?
- How do vapor phase PFAS emissions compare to dispersion compositions?
 - Are surfactants (GenX, telomer alcohols) included in the vapor emissions?
- Are processing temperatures sufficient to transform PFAS?
 - Cleave functional groups to produce new PFAS?
 - Are processing temperatures sufficient to cleave C-F bonds and produce F2 and HF?
- How do processing temperatures and times affect vapor and aerosol emissions (mass and composition)?

Pilot-scale Incineration Experiments

- 65 kW refractory lined furnace (aka Rainbow Furnace) with peak temperatures at ~1400 °C, and >1000 °C for ~3 sec
- Combustor connected to facility air pollution controls
 - Afterburner, baghouse, NaOH scrubber
- Introduce C1 and C2 fluorinated compounds with fuel, air, post flame to measure POHC destruction and PIC formation
 - FTIR and other real-time and extractive methods
- Add modeling component using REI's Configured Fireside Simulator (CFS) CFD/kinetic model to include C1 & C2
 - F chemistry from literature (Burgess et al. [1996])

Field-scale Incineration Experiments

- Evaluating a variety of technologies and approaches for the thermal destruction of PFAS
- Collection of replicate samples using different systems
 - Modified SW-846 Method 0010 Train (MM5) to collect polar and nonpolar, semivolatile and nonvolatile PFAS compounds
 - Modified Method 18 PFAS sampling train developed by Test America to collect polar, volatile PFAS
 - EPA-ORD's SUMMA canister sampling method to collect nonpolar, volatile PFAS
- Analysis includes targeted (known analytes) and non-targeted (high resolution mass spectrometry for unknown PFAS), and a proof-of-concept test for a Total Organic Fluorine (TOF) method
- (OPTION) Surrogate testing using carbon tetrafluoride (CF4) or hexafluoroethane (C2F6) as a surrogate for PFAS
 - CF4 in particular has a very strong C-F bond which would give confidence in the thermal destruction of C-F bonds in PFAS (note CF4 is used as refrigerant and is a GHG)
 - Advantage of using a surrogate is that the test would be for a short duration (~1hr)
 - FTIR used to continuously monitor emissions

PFAS Innovative Treatment Team (PITT)

- Full-time team that brings together a multi-disciplined research staff
- <u>Charge</u>: How to remove, destroy, and test PFAS-contaminated media and waste
- Goals:
 - Assess current and emerging destruction methods being explored by EPA, universities, other research organizations, and industry
 - Explore the efficacy of methods while considering by-products to avoid creating new environmental hazards
 - Evaluate methods' feasibility, performance, and costs to validate potential solutions
- <u>Expected Results</u>: States, tribes, and local governments will be able to select the approach that best fits their needs, leading to greater confidence in clean-up operations and safer communities
- <u>Deadline</u>: Later this year

Non-Incineration Technologies Reviewed

- Chemical
- Biological
- Plasma
- Mechanochemical
- Sonolysis
- Ebeam
- UV
- Supercritical water oxidation
- Deep well injection
- Sorption/stabilization
- Electrochemical
- Landfill
- Land application

Assessment Factors:

- Technology readiness
- Applicability
- Cost
- Required development remaining
- Risk/reward of technology adoption

Innovative technologies selected for further investigation.

Planned Products

ORD Products on Fundamental Understanding of Thermal Treatment

- TGA/MS Thermal Destruction Temperature Points with Off Gas Measurements on Potential Defluorination
- PFAS Model Incorporation of Published C1 and C2 Fluorocarbon Kinetics to Predict Simple PFAS Behavior in Incineration Environments
- Low Temperature Interactions of PFAS with Sorbents from Bench-Scale Experiments
- Thermal Destruction of PFAS from Pilot-Scale Experiments

ORD Measurement Methods for PFAS

- Quantitative Assessment of Modified Method 5 Train for Targeted PFAS
- PFAS Method OTM 45
- Total Organic Fluorine Methods
- Non-targeted Measurement Approaches to Identify PFAS

Other Contributions

Supporting Incineration Guidance as part of the National Defense Authorization Act

EPA's PFAS Research

- The EPA is rapidly investigating PFAS to prioritize risk and needs
- This research is organized around:
 - identifying analytical methods
 - understanding toxicity
 - understanding exposure
 - identifying effective treatment and remediation actions
- Visit EPA's website Research on Per- and Polyfluoroalkyl Substances (PFAS):

https://www.epa.gov/chemical-research/research-and-polyfluoroalkyl-substances-pfas

Questions

Lara P. Phelps, Director

Air Methods and Characterization Division,
Center for Environmental Measurement and Modeling
US EPA Office of Research and Development

phelps.lara@epa.gov

(919) 541-5544 - Office

(984) 287-0594 - Cell

The views expressed in this presentation are those of the individual author and do not necessarily reflect the views and policies of the US EPA

