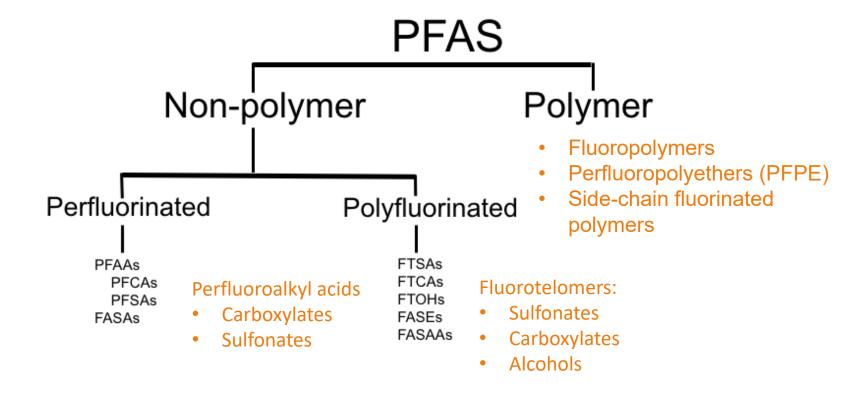
🔅 eurofins

Development of a Forensics Based Approach to Evaluating Impacts of PFAS Contamination in the Environment


Charles Neslund
PFAS Practice Lead and Scientific Officer
Eurofins Lancaster Laboratories Environmental, LLC

The General Classes of Per- and Polyfluoroalkyl Substances (PFAS)

Source: ITRC Naming Conventions and Physical Chemical Properties fact sheet

PFAS Forensics

PFAS forensics is a developing area of applications. We currently have several tools already in use that can be applied towards forensic investigations;

- Chemical Fingerprinting
- Isomer comparison
- AFFF Forensics
- Applications of TOP Assay

Chemical Fingerprinting – PFAS by Isotope Dilution

- Matrices
 - Potable water
 - Nonpotable water
 - Soil/sediment
 - Tissue/biota

- Dust wipes
- Landfill leachate
- AFFF Formulations

- 36 Compounds
- Solid Phase Extraction/Cleanup using weak anion exchange
- Isotope Dilution quantitation
 - 25 isotopically labeled internal standards
- Injection Standards for monitoring instrument vs extraction performance
- Advantages
 - Isotope Dilution offers the highest degree of quantitative accuracy and precision
 - Broadest list of compounds and widest range of matrices
 - Lowest reporting limits across matrices
 - Used for TOP Assay

Per- and Polyfluorinated Compounds

Perfluorobutanoic acid

Perfluoropentanoic acid

Perfluorohexanoic acid

Perfluoroheptanoic acid

Perfluorooctanoic acid

Perfluorononanoic acid

Perfluorodecanoic acid

Perfluoroundecanoic acid

Perfluorododecanoic acid

Perfluorotridecanoic acid

Perfluorotetradecanoic acid

Perfluorohexadecanoic acid

Perfluorooctadecanoic acid

N-methylperfluoro-1-octanesulfonamidoacetic acid

N-ethylperfluoro-1-octanesulfonamidoacetic acid

2-(N-methylperfluoro-1-octanesulfamido)-ethanol

2-(N-ethylperfluoro-1-octanesulfamido)-ethanol

Perfluorobutanesulfonate

Perfluoropentanesulfonate

Perfluorohexanesulfonate

Perfluoroheptanesulfonate

Perfluorooctanesulfonate

Perfluorononanesulfonate

Perfluorodecanesulfonate

Perfluorododecanesulfonate

Perfluorooctanesulfonamide

Methylperfluoro-1-octanesulfonamide

Ethylperfluoro-1-octanesulfonamide

4:2 Fluorotelomer sulfonate

6:2 Fluorotelomer sulfonate

8:2 Fluorotelomer sulfonate

10:2 Fluorotelomer sulfonate

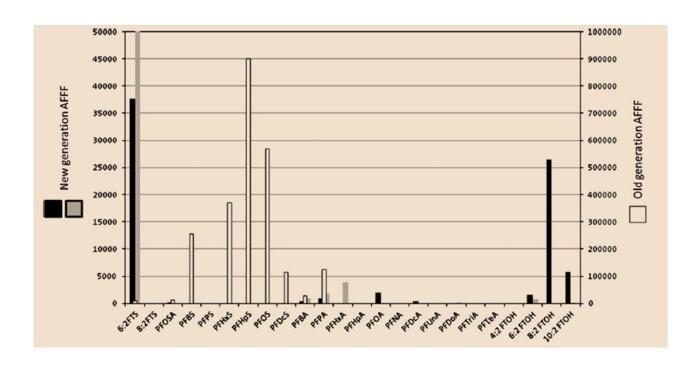
HFPO-DA (GenX)

ADONA

F53b (major and minor)

EPA 537.1 list

Additional PFAS methods

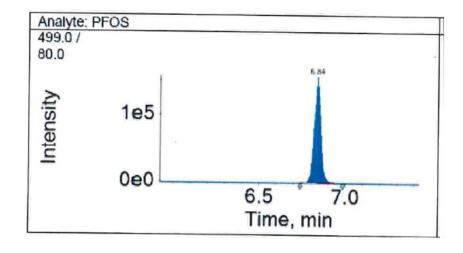

- Fluorotelomer Alcohols
 - GCMSMS method
 - Water and solids
 - Instrumental set-up like 8270E and extractions like 3510 and 3540/50
 - Current compound list
 - 4:2 Fluorotelomer alcohol.
 - 6:2 Fluorotelomer alcohol
 - 7:2S Fluorotelomer alcohol
- 8:2 Fluorotelomer alcohol
- 10:2 Fluorotelomer alcohol

Chemical Fingerprinting

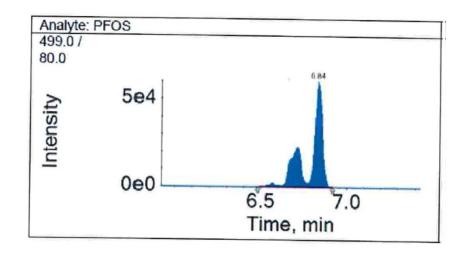
Herzke, et al., 2012, Chemosphere, 88, 980-987

Isomer Comparison

Figure 4-1. Linear and one branched isomer of PFOS

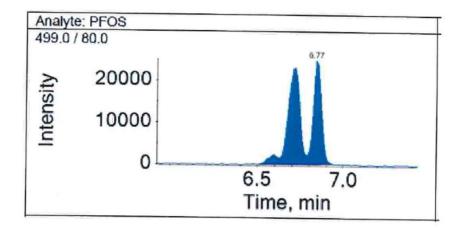

ITRC PFAS Fact Sheet Naming Conventions April 2020

Isomer Comparison

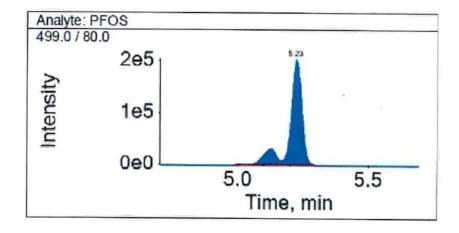


Chromatogram of PFOS Standard of Linear Isomer

Chromatogram of PFOS
Standard of
Branched/Linear Mix
Typical Ratio



Isomer Comparison



Chromatogram of PFOS
Sample with
Branched/Linear Mix
High Bias Ratio

Chromatogram of PFOS
Sample with
Branched/Linear Mix
Low Bias Ratio

AFFF Forensics

Table 2-1. Discovery and manufacturing history of select PFAS

PFAS ¹	Development Time Period								
	1930s	1940s	1950s	1960s	1970s	1980s	1990s	2000s	
PTFE	Invented	Non-Stick Coatings			Waterproof Fabrics				
PFOS		Initial Production	Stain & Water Resistant Products	Firefighting foam				U.S. Reduction of PFOS, PFOA, PFNA (and other select PFAS ²)	
PFOA		Initial Production		otective patings					
PFNA					Initial Production	Architectural Resins			
Fluoro- telomers					Initial Production			Predominant form of firefighting foam	
Dominant Process ³		Electrochemical Fluorination (ECF)						Fluoro- telomerization (shorter chain ECF)	
Pre-Invention of Chemistry /			Initial Chemical Synthesis / Production			Commercial Products Introduced and Used			

Notes:

- 1. This table includes fluoropolymers, PFAAs, and fluorotelomers. PTFE (polytetrafluoroethylene) is a fluoropolymer. PFOS, PFOA, and PFNA (perfluorononanoic acid) are PFAAs.
- 2. Refer to Section 3.4.
- 3. The dominant manufacturing process is shown in the table; note, however, that ECF and fluorotelomerization have both been, and continue to be, used for the production of select PFAS.

Sources: Prevedouros et al. 2006; Concawe 2016; Chemours 2017; Gore-Tex 2017; US Naval Research Academy 2017

ITRC PFAS Fact Sheet History and Use April 2020

AFFF Forensics

Legacy PFOS AFFF

- PFOS and ECF Sulfonamides
- PFOS and other PFSAs

Legacy Fluorotelomer AFFF

- Fluorotelomer Precursors with C6 and C8 carbon chains
- 6:2 and 8:2 fluorotelomers
- PFOA and long chain acids

Modern Fluorotelomer AFFF

- Fluorotelomer Precursors with C6 carbon chains
- 6:2 Fluorotelomers and short chain acids

Total Oxidizable Precursors - TOP

Article

pubs.acs.org/est

Oxidative Conversion as a Means of Detecting Precursors to Perfluoroalkyl Acids in Urban Runoff

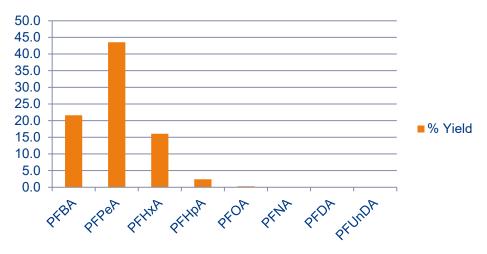
Erika F. Houtz and David L. Sedlak*

Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, California, 94720-1710

Concept is to analyze a sample for perfluoroalkyl carboxylic acids (PFCA) and perfluoroalkyl sulfonic acids (PFSA) and any identified precursors. Then subject a second aliquot of the sample to relatively harsh oxidative conditions. Analyze the oxidized sample for the same perfluoroalkyl acids and precursors. Expect to see;

- a. Reduction or elimination of the precursors
- b. Increase in concentrations of perfluoroalkyl acids

TOP Assay – 6:2 FTS

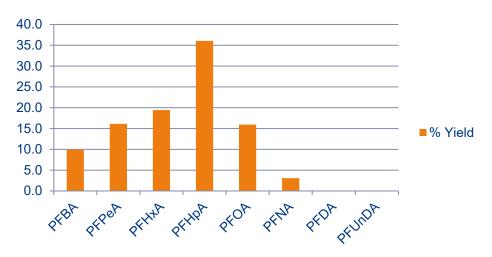


Results of oxidation of 6:2 Fluorotelomer sulfonate at 250 ng/l

PFCA ELLE Houtz PFBA 21.6 22 43.6 **PFPeA** 27 **PFHxA** 16.1 22 **PFHpA** 2.4 **PFOA** 0.3 **PFNA** 0.0 **PFDA** 0.0 **PFUnDA** 0.0

Molar Yield

TOP Assay – 8:2 FTS

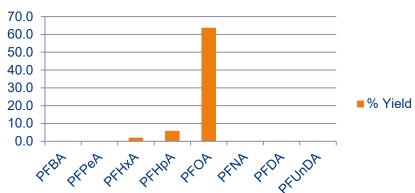


Results of oxidation of 8:2 Fluorotelomer sulfonate at 250 ng/l

PFCA ELLE Houtz PFBA 9.9 11 **PFPeA** 16.1 12 19.4 **PFHxA** 19 **PFHpA** 36.1 27 15.9 **PFOA** 21 **PFNA** 3.1 **PFDA** 0.0 0.0 **PFUnDA**

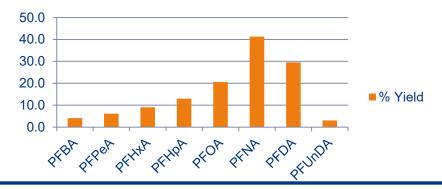
Molar Yield

TOP Assay – other precursors



NEtFOSAA

Molar Yield


NEtPFOSAE

Molar Yield

10:2 FTS

Molar Yield

Newer Techniques being Developed

Total Organic Fluorine (TOF) - Combustion Ion Chromatography (CIC)

- Marriage of TOX and IC
- Sample (or treated sample) is combusted in a furnace at 900°C – 1100°C
- Effluent collected in buffer and injected into ion chromatograph (IC)
- Quantify fluorine (as fluoride) content
- Compare ratio of total (or extractable) fluorine to total PFAS

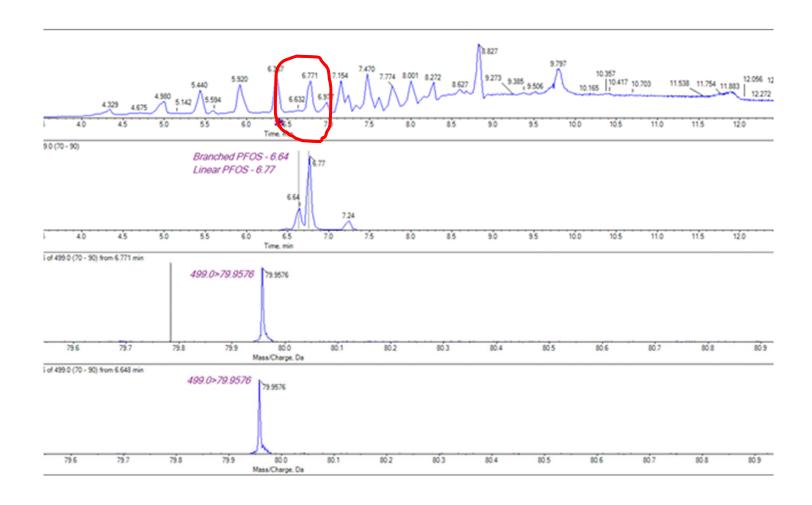
Newer Techniques – Non Targeted Analysis

	Targeted	Screening	Discovery	
Chemical Target	Selected Chemicals	100s-100,000s per library	Any Chemical	
Method of Analysis	Focused Method	Non-Targeted Method	Non-Targeted Method(s)	
Chemical Structure	Known	Known in Library	Unknown	
Reference Data	Available	Some	Some, maybe simulated	
Standards	Available	Maybe, for common compounds	Unlikely	

Adapted from McCord, ACECNC, April 23, 2019

Newer Techniques – Non Targeted Analysis

Technique utilizes LC/MS-qTOF (quadrapole time of flight mass spectrometry)


- Technique allows for determination of accurate mass (0.0001 amu)
- Initial differentiation based on extraction of sample
- Then analysis of targeted compounds (knowns) to remove those from "background"
- Compare remaining peaks to limited mass spectral libraries to identify the known/unknowns
- Remaining peaks are unknowns and would rely on regression of accurate mass determinations for possible identification

Newer Techniques – Non Targeted Analysis

Eurofins Capacity – New Space

Questions

charlesneslund@eurofinsus.com 717-799-0439