

Bureau of Laboratories

Public and Private Environmental Laboratory Collaboration for a Standardized Methane Test Method

Martina McGarvey, Laboratory Director National Environmental Monitoring

Conference

Virtual

August 14, 2020

Overview from the Public Regulatory Perspective

- Reasons for Methane Testing in PA and Need for Standardized Gas Testing Migration, Risk Assessment, Brief History Methane Analysis
- Techniques Variability observed by PA DEP, O&G Advisory Committee, and O&G Industry
- The need for a standardized method
 PA DEP Laboratory Sub-Sampling Study
 Open vs. Closed Vial

Why Test for Methane?

Regulations:

NO Federal Regulations or Advisory Levels

Possible Risk Factors:

NOT listed as Toxic, Poisonous, Carcinogenic, Corrosive, Reactive

Why Test for Methane?

Possible Risk Factors:

Asphyxiation, Explosion

Fortunately Rare with O&G Regs

Other Reasons:

Indirect Effect on Water Quality

High methane concentration increases sulfides, iron, magnesium

Brief History of Methane Testing in PA

Origins & Sources of Methane

Shallow thermogenic gas

Deep thermogenic gas

Microbial gas (CO₂ reduction)

Microbial gas (fermentation)

Gas Origin

Gas drilling activity
Abandoned (vertical) gas well
Landfill/sewer gas
Coal bed gas

Natural gas pipelines

Gas Source

Why Does BOL Test for Methane?

Drilling-Related:

Gas Migration Investigations

Pre-Screen for Isotopic Analysis (> 2 mg/L)

Non-Drilling Related:

Monitor Landfill Gases

Chlorinated Solvent Remediation (Ethene)

Analytical Options

No Standardized Methods Available and None Included in O&G Regulations

- **❖** RSK175
- PA DEP Method

(aka: RSK175 mod, BOL6019, EPA 5021 mod, PADEP 3686)

Purge & Trap and PA DEP 9243

Analysis Techniques – Overview

Most Common is GC/FID:

- GC = Gas Chromatography
- FID = Flame Ionization Detection

- Advantages of FID:
 - ★ "Universal" Detector
 - ★ Very Stable

Sample Introduction: Headspace

Static Equilibrium Technique

Headspace GAS
Is Analyzed,
Not WATER

IMPORTANT

Initial Sample Conc.

Does Not Equal!

Equilibrated Gas Conc.

Before Equilibrium

After Equilibrium

Gas vs. Aqueous Calibration

	Gaseous	Aqueous
Purchase Multiple Cylinders	Yes	Yes
Automated Prep	No	No
Automated Analysis	No	Yes
Upper Cal Limit	None	Saturation
Extensive Calculations	Yes	No
Direct Correlation with Sample Matrix	No	Yes

Headspace SOP Comparison

	RSK-175	PADEP
Automated Analysis	No	Yes
Automated Sample Prep	No	No
Gas or Aqueous Standards	Gas	Aqueous
Linear Range	Wide	Wide
Carryover Potential	Low	Low
Matrix Interferences	Low	Low
Open Sample Vial	No	Yes
Extensive Calculations	Yes	No
LCS/MS Possible	No/No	Yes/Yes

Sample Introduction: Purge & Trap

Dynamic Extraction Technique

Purge gas moves analytes from sample to trap

Direct determination of sample concentration

Overall Comparison of Analytical Options

	RSK-175	PADEP	P&T
Automated Analysis	No	Yes	Yes
Automated Sample Prep	No	No	Yes
Gas or Aqueous Standards	Gas	Aqueous	Aqueous
Linear Range	Wide	Wide	Moderate
Carryover Potential	Low	Low	High
Matrix Interferences	Low	Low	Moderate
Open Sample Vial	No	Yes	No
Extensive Calculations	Yes	No	No
LCS/MS Possible	No/No	Yes/Yes	Yes/No

ASTM Method

- Headspace GC/FID Analysis
- Recommended: Closed Sampling System
- Can only be achieved using manual prep or a vendor-specific, modified P&T autosampler
- Will increase the cost and/or time burden on labs that do not own the correct P&T
- Is it actually necessary?

Laboratory Sub-Sampling Study

Side-by-side analysis:

- All aliquots taken from same sample bottle
- ❖ H0: Transfer to HS vial using He (closed system)
- ❖ P1: Remove cap, use pipet (~ 1 minute)
- ❖ P2: Leave open 60 sec, use pipet (~ 2 minutes)
- ❖ P3: Leave open 60 sec, use pipet (~ 3 minutes)

Study Results

Good Laboratory Technique

Analyst must be mindful of technique when working with volatile components

- Cold Sample (not room temp)
- One Sample At A Time
- ✓ Work Quickly
- Cap Immediately
- ✓ Should Take < 30 sec</p>

Breakdown: 1 Minute

Breakdown: 1 Minute, Unsaturated

Breakdown: 2 Minutes

Breakdown: 3 Minutes

Summary Statistics - Precision

- Precision may be quantified using %RSD => Calculate %RSD for H0/P1/P2/P3 data set
- Hypothesis: IF opening vial introduces bias, THEN expect elevated %RSD values
- ❖ Observation: Average %RSD = 5.9% %RSD Range = 0.9 to 18.9%
- Conclusion: Bias from opening vial not significant compared to accepted control limits

Summary Statistics - Bias

Sub-Sampling Study Conclusions

Opening the sample bottle does not significantly affect the results as long as the analyst uses Good Laboratory Technique

A requirement to use a closed sampling system for methane analysis place may require unnecessary equipment purchase

Collaborative Summary

Through collaboration and discussions which began at NEMC the PA DEP, Marcellus Shale Coalition, Environmental Standards, Inc. and **Environmental Services Laboratories (ESL)** were able to develop a study and propose data for a standardized method as well as work with the development of certified reference materials. The study included multiple lab participation and multiple phases with a certified reference material developed

Bureau of Laboratories

Special Thank you to Acting Technical Director, June Black

Bureau of Laboratories

Questions????

Martina McGarvey
Laboratory Director
PA DEP Bureau of Laboratories

(717) 346-3618

mmcgarvey@pa.gov

