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Research goal

e Water analysis usually requires different methods/instruments for each analyte class

e Few of the multiplex, fast, low-cost methods are sensitive, accurate, and precise
enough for reliable tap water monitoring

e We are working to harness water fingerprints created using the coffee-ring effect for
low-cost, multiplex water chemistry monitoring

2. Develop an algorithm (CNN model) to harness water fingerprints

e Water fingerprints are images

e Water fingerprints sensitive to water chemistry MSU academic hall

e Current models are not strong enough to extract chemistry
information from water fingerprints




To harness the Coffee Ring Effect

Dried Detroit water Solid Separated by size (Wong 2011)
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Simple setup to harness coffee ring effect

Step 1: Peel off plastic film and clean Step 2: Coffee ring effect brings particles
the slide surface to droplet edge
Step 1 Step 2 Mechanic pipette

Wat i 2 pL water sample
Mirror like finish ater evaporation
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Step 3: Less soluble crystals formed first Step 4: More soluble crystals formed later
Step 4

Step 3

Keep substrate steady when drying
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Solids deposition location affected by coffee
ring effect
Li, X, A. Sanderson, S Allen, and R. Lahr. 2020The Analyst, January.




Dropping sample
droplet and take
the picture

Water fingerprints created by coffee ring effect are unique
for tap water from each clty
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Water fingerprints created by coffee ring effect are unique

for tap water from each city
MINIMALLY TREATED GROUNDWATER REVERSE OSMOSIS

MSU academic hall Durand Battle Creek Kalamazoo Fowlerville Charlotte Portland Genoa Twp private Allegan

LIME SOFTENED ION EXCHANGE UNTREATED
GROUNDWATER
Lansing — Site A Lansing- Site B East Lansing & Meridian Howell MSU residence hall Williamston Genoa Twp rivate Rest stop - Okemos Rest stop - Zeelan@_

UNTREATED SURFACE WATER SOURCE -
GROUNDWATER SURFACE WATER SOURCE LAKE MICHIGAN

Rest stop - 196/M66 Genoa Twp private Detroit Flint Swartz Creek Holland Grand Rapids Wyoming
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Different deep learning networks are used to analyze
each different data type

Convolutional neural network

For image data, for example, medical image data, face recognition and object detection

Long short-term memory network

‘ For series data, for example time series data, speech data, robot control, grammar learning

Recurrent neural networks

‘ For series data, for example text data, speech data, machine translation

Generative adversarial network

‘ For two networks contest with each other, for example, fashion, science, video games, Miscellaneous applications

Reinforcement learning

‘ Along side of supervised learning and unsupervised learning, for example, AlphaGo




Convolutional neural network (CNN) have been used for image
analysis in many different fields

Magnetic resonance images Molecular structure Quantification of Analyte
and Computerized for toxicity prediction Concentration in the Single
tomography images Molecule Regime
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Convolutional Neural Networks structure includes convolutional
layers, max pooling layers and fully connected layers to take input
images and extract features of interest
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Convolutional layers work to extract nonlinear features by
multiplying by the feature parameter matrix with image matrix
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Convolutional layer illustration

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-
neural-networks-the-eli5-way-3bd2b1164a53



Max pooling layers work to extract the most important information
(features) from convolutional layers processed layers.
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Max pooling illustration

https://developers.google.com/machine-learning/practica/image-
classification/convolutional-neural-networks



Fully connected layers work to correlate image features with
nonlinear activation function to reduce 2-D image to 1-D data

Hidden Hidden Hidden
Input layer layer 1 layer 2 layer 3
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Fully connected layer

https://www.mql5.com/en/blogs/post/724245



Parameters in the fully connected layers will be updated by
backpropagation based on the target output
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Used standard methods for analysis of water to measure
chemistry and used for residue analysis

30 water collected across Michigan State
Instruments: ICP-OES, IC, pH meter, oven,
AA, conductivity meter

Q <:> Time consumed: around 3 month
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Li, X, A. Sanderson, S Allen, and R. Lahr. 2020The Analyst, January.



Samples were grouped based on their water chemistry
using cluster analysis

Dim2 (19.2%)
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Clustering method
groups water samples
based on their
chemistry data

Is that possible to
correlate water
samples coffee ring
effect pattern with
chemistry data?
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Water fingerprints created by coffee ring effect are unique

for tap water from each city
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Convolutional Neural Network model for water residue
pattern recognition

16 filters in size 19*19

32 filters in size 2*2
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Ten CNN models were created, and assigned the image to
a group with similar water chemistry (cluster analysis)
with an accuracy of 773 %
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Classes with more images were more accurate.
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Larger dataset needed to achieve higher accuracy

7

40

- 16

Waters included

1 Surface waters, RO,
others (MSU residence

hall, East Lansing

2 Untreated well water
with high TDS

3 Lime softened

4 Minimally treated

groundwater, other
(Williamston)

5 Untreated
groundwater, some
minimally treated

6 Well water with high
TDS after ion exchange
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Images were analyzed using Matlab particle analysis
and python image analysis

Original
RGB
images
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Principal component analysis (PCA)

aids in classification

of samples into groups with similar ions

X Na»SO4 5.0 mM,CaS0, 0.5 mM, MgSO, 0.25 mM

B Na,SO4 2.5 mM,CaS0, 0.5 mM, MgS0O4 0.25 mM

@ Na,SO, 1.25 mM, CaS0, 0.5 mM, MgS0, 0.25 mM
NaHCO; 10 mM, CaS0, 0.5 mM, MgS0, 0.25 mM
NaHCO; 5.0 mM, CaS0, 0.5 mM, MgS04 0.25 mM
NaHCOs 2.5 mM, CaS0, 0.5 mM, MgS04 0.25 mM

¥ NacCl 10 mM, CaCl, 3.0 mM,MgCl, 1.5 mM
W NacCl 5.0 mM, CaCl; 3.0 mM,MgCl, 1.5 mM
® Nacl 2.5 mM, CaCl; 3.0 mM,MgCl, 1.5 mM
X NaHCO; 10 mM, CaCl, 0.5 mM, MgCl, 0.25 mM
W NaHCOs 5.0 mM, CaCl, 0.5 mM, MgCl, 0.25 mM
@® NaHCOs 2.5 mM, CaCl; 0.5 mM, MgCl, 0.25 mM

PCA method couldn’t recognize nonlinear
features so the classification result is not
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Future Work: To build a CNN model to predict where

elements deposit and use it to quantify the element
CaCl,, MgCl,, NaCl mixture
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Conclusion-Coffee ring effect with CNN model could
monitor water components

e There is correlation between water samples coffee ring effect pattern and water
chemistry

e Cluster analysis could classify water samples based on their chemistry data

e Principal component analysis on water sample residue patterns couldn’t classify
water samples well because data is non-linear

e CNN model could effectively recognize tap water residue patterns and classify
water samples based on the patterns
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