U.S. Air Quality Management

A Half-Century of Progress

John Bachmann

Vision Air Consulting
Former Associate Director for Science/Policy, EPA/OAQPS

Air Quality Management 101+

- 2020: the 50th anniversary of Earth Day, EPA, and the Clean Air Act
- A look at the the origins, development, evolution of U.S. AQM
 - Legislation, policies, and politics
 - A focus on National Ambient Air Quality Standards (NAAQS)
 - What worked and what didn't in US Air Quality Management
 - A look at the latest in air pollution accountability science
 - What's left? Continuing challenges for air quality management

2007 CRITICAL REVIEW

ISSN:1047-3289 J. Air & Waste Manage. Assoc. 57:652-697 DOI:10.3155/1047-3289.57.6.652 Copyright 2007 Air & Waste Management Association

Will the Circle Be Unbroken: A History of the U.S. National Ambient Air Quality Standards

John Bachman

Vision Air Consulting, Chapel Hill, INC; and Formerly Associate Director for Science/Policy and New Programs, Office of Air Quality Planning and Standards, U.S. Environmental Protection Agency, Research Triangle Park, NC

US Air Pollution Programs in 1960

- Cities maintained major air pollution responsibility
 - 84 municipalities had air programs, only 8 state programs*
 - California dominated resources (60% of \$10 million total city/state spending).

- Federal involvement limited to modest research, monitoring, and state assistance programs
 - PHS opposed federal involvement in air control programs
 - New PHS Division of Air Pollution: 251 employees, \$4 million
 - National Air Sampling Network 60 urban, 20 nonurban particle (TSP) trends sites, many more non-trend sites

The 1960's – who can remember?

Bad scenes from the 60's

Earth Day April 22, 1970

20 million people participated in a national teach-in

Astute politicians took notice early

Gaylord Nelson – Earth Day 1995 recalling his 1969 inspiration for the first Earth Day, a national "Teach-in" on the environment

February 2, 1970

 In 1963, 65, 67 new air pollution legislation, research and funding

• In 1970 alone:

- National Environmental Policy Act (January 1)
- Environmental Quality Improvement Act (April 3)
- Environmental Protection Agency formed (Dec 2)
- Clean Air Act Amendments of 1970 (Dec 31)

Alternative Pollution Control Theories

- Risk-based approach
 - e.g. Air quality management based on health and environmental goals
 - Emission limits based on residual risk
- Technology-based approach
 - e.g. 'Best' technology on all major source categories regardless of risk
- Market approaches
 - e.g. Cap and trade, emissions taxes/fees
- The U.S. system?

Establish Goals

EPA sets sciencebased national standards (NAAQS)

Track and Evaluate Results

States monitor to see if standards are achieved

The US approach is a Hybrid!

Air Quality Management - 1970

Determine Emissions Reductions

Scientific Research

Implement and Enforce Strategies

Sources comply with rules
States and EPA enforce

States monitor,

inventories, model reduction strategies

Develop
Programs to
achieve

States develop implementation plans. **EPA** reviews plans.

EPA sets technology-based national standards for vehicles, new major stationary sources, more

SO₂ Trends

- 32 NASN urban sites
- Improvements begin in 67, accelerate 69-71
- This suggests 1963 Interstate studies, 1967 CAA AQM requirements produced results, continuing after the 1970 amendments

Ozone Air Quality, 1980-2005

Annual 2nd maximum 1-hr average

0.20 286 Sites 1988 peak a 0.15 stimulus for 1990 Concentration, ppm 01.0 **Amendments** From a 1989-90 perspective, AQM was not working for smog 0.05 By 1990; 100 areas did not meet the 1-hour standard 9 9 9 9

Ozone Air Quality, 1980-2005

Annual4th maximum 8-hr average

An interim scorecard 1980-1994

- Unfinished business:
 - Acid rain regional scale SO_x and NO_x emissions
 - Ozone Rethinking- regional scale NO_x and biogenic VOC
 - New science suggests stronger standards
 - PM New fine particle health science
 - Regional scale SO_x, NO_x, diesel emissions
- Impetus for the 1990 Clean Air Act amendments

AQM since the 1990 Amendments

- Acid Rain Implementation
- The NAAQS reviews
 - Tightening O₃, PM
- NAAQS Implementation
 - O₃ policy catches up with science, new PM_{2.5} needs
 - New mobile regs, regional strategies
- Pressure on power generation
- Air Toxics

Criteria pollutants continue to improve

A Clean Air Success Story - benefits, costs, and growth

Accountability Science

Evaluating the impact of long-term exposure to fine particulate matter on mortality among the elderly

X. Wu, 1+ D. Braun, 1,2+ J. Schwartz, 3 M. A. Kioumourtzoglou, 4 F. Dominici1*

A massive health study using multiple advanced causal inference methods to assess the benefits of Reducing fine particles

"we conclude that long-term $PM_{2.5}$ exposure is causally related to mortality"

The effects estimates are in the range of those found in past EPA Benefit-cost assessments using multiple cohort studies.

Despite progress, major challenges remain

- Continued improvements to maintain and increase the benefits achieved so far, and ensure they are distributed fairly to all Americans
- International transport
- Climate change
 - Drought/fires and PM_{2.5} are already here
 - Warming induced stagnation and other effects increase ozone
 - Climate strategies benefit air quality