thermo scientific

Determination of per- and polyfluorinated alkyl substances (PFAS) in drinking water using automated solidphase extraction and LC-MS/MS

Changling Qiu, Xin Zhang, Rahmat Ullah, Wei Chen, Yan Liu, Chris Shevlin Thermo Fisher Scientific, Sunnyvale, CA

INTRODUCTION

Per- and polyfluorinated alkyl substances (PFAS) are a group of man-made chemicals including perfluorooctanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), and GenX chemicals that have been manufactured and used in a variety of industries globally.^{1,2} These compounds have a wide range of commercial product applications including industrial polymers, stain repellents, surfactants, waterproofing products, packaging, and aqueous film forming foams used for firefighting. PFAS are highly soluble in water, chemically stable, persistent in the environment, and can accumulate in the human body over time, leading to adverse human health effects.³

In November 2018, the United States Environmental Protection Agency (U.S. EPA) published Method 537.1 "Determination of selected per- and polyfluorinated alkyl substances in drinking water by solid phase extraction and LC/MS/MS["].⁴ The method uses an offline solid-phase extraction (SPE) with liquid chromatography tandem mass spectrometry (LC-MS/MS) to extract, enrich, and determine 18 PFAS in drinking water. Currently most testing laboratories perform the sample extraction manually using a vacuum manifold, which is labor-intensive, time consuming, and the flow rate through the cartridge is difficult to control. There is a high demand for automation of the SPE procedure.

In this poster, we discuss the development of an analytical method using an automated SPE system, AutoTrace 280, and LC-MS/MS for determination of eighteen PFAS following the guidelines provided by U.S. EPA Method 537.1. We have demonstrated that the AutoTrace 280 system provides reliable automated SPE for determination of PFAS in large-volume (20 mL-4 L) aqueous samples.

MATERIALS AND METHODS

Equipment [missing series of the series of t

- Thermo Scientific[™] Dionex[™] AutoTrace 280 PFAS[™] System (1)
- Thermo Scientific[™] Vanguish[™] Flex Duo UHPLC system, fitted with Thermo Scientific[™] PFC free kit (2)
- Thermo Scientific[™] TSQ Fortis[™] triple quadrupole mass spectrometer (3)
- Organomation Associates[™] 12 Position N-EVAP Nitrogen Evaporator (4)

	0	0	1 0 (1	0
No.	Method (programmed)			User intervention/infor
1	Process six samples using	the following n	nethod steps	
2	Condition cartridge with 7.5	mL of MeOH	into solvent waste	
3	Condition cartridge with 7.5	mL of MeOH	into solvent waste	
4	Condition cartridge with 9.0) mL of water i	nto aqueous waste	
5	Condition cartridge with 9.0) mL of water i	nto aqueous waste	
6	Load 270.0 mL of sample o	nto cartridge		Sample bottle actually co method is programmed to it accounts for the delay v automatically goes to aqu
7	Pause and Alert operator, re pressed	esume when C	CONTinue is	Add 7.5 mL reagent water inner walls to rinse out an Make sure the sample we bottle submerged into sam
8	Load 17.5 mL of sample on	to cartridge		The method is programm
9	Pause and Alert operator, re pressed	esume when C	CONTinue is	Add 7.5 mL water into sar to rinse out any residual s Make sure the sample we bottle submerged into sar
10	Load 21.5 mL of sample on	to cartridge		The method is programm to pull all the aqueous pha
11	Dry cartridge with gas for 1	0.0 minutes		
10	F 1			

12 End

Cond air push

Rinse air push

Elute air push

15.0

20.0

5.0

Step	Flow rate (mL/min)	SPE paramete	rs
Cond flow	10.0	Push delay	5 s
_oad flow	10.0	Air factor	1.0
Rinse flow	10.0	Autowash vol.	1.0 mL
Elute Flow	1.0		
Cond air push	15.0		
Rinse air push	20.0		
Elute air push	5.0		

Table 2. Sample Elution (program this method in solid-phase elute mode)

No.	Metho	d (programmed)	User intervention/inform	nation		
			methanol into sample bott	le, swirl over the i	ng CONTinue on the front panel. Add 4.0 mL nner walls to rinse out any residual sample. ottom of the sample bottle submerged into that	
1		s six samples using the g method steps				
2	2 Manually rinse sample container with 14.0 mL to collect First, elute with 4.0 mL MeOH. The method is programmed to consider the			is programmed to consider the delay volume.		
3		and alert operator, when CONTinue is				
4	Manually rinse sample container with 18.0 mL to collect		Second, elute with 4.0 mL MeOH. The method is programmed to consider the delay volume and push out any residual methanol.			
5	End					
Step		Flow rate (mL/min)	SPE paramete	rs	Instrument parameters	
Cond	l flow	1.0	Push delay	5 s	Max elution vol. 20.0 mL	
Load	flow	1.0	Air factor	1.0	Exhaust fan on Yes	
Rinse	flow	1.0	Autowash vol.	1.0 mL	Beeper on Yes	
Elute	flow	1.0				

*Do not detach the cartridges during methods one and two

Parameter

Table 3. LC conditions and MS parameters

Value

ontains 250 mL of sample. The to deliver 270 mL sample as volume in the system. Waste queous waste.

ter into sample bottle, swirl over the any residual sample. veights are at the bottom of the sample

sample. med to consider the delay volume sample bottle, swirl over the inner walls I sample.

weights are at the bottom of the sample sample.

med to consider the delay volume and hase from the tubes

Instrument parameters				
Max elution vol.	20.0 mL			
Exhaust fan on	Yes			
Beeper on	Yes			

Analytical column	Accucore RP-MS, 2.1 \times 100 mm, 2.6 μm		lon source type	H-ESI
	Hypersil BDS C18, 2.1 \times 50 mm, 5 μ m. This column was installed prior to the autosampler to remove any contaminants		Polarity	Negative
Isolator column			Negative ion	2500 V
	from the mobi		Sheath gas	50 arbitrary units
Column temp.	45 °C		Aux gas	10 arbitrary units
Flow rate	0.5 mL/min		Sweep gas	1 arbitrary units
Injection volume	5 µL		lon transfer tube temp.	325 °C
Autosampler temp.	6 °C		Vaporizer temp.	300 °C
Solvent A	Water contain	ing 0.1% acetic acid	Q1 resolution (FWHM*)	0.7
Solvent B	Methanol cont	taining 0.1% acetic acid	Q3 resolution (FWHM*)	1.2
Solvent C	20 mM ammo	nium acetate in water	CID gas	2 mTorr
Gradient	0 1 14 17 18	%B %C 30 5 95 5 95 5 30 5 30 5	*FWHM: Full width at half maxi	mum
8.0e4 5.0e4 2.5e4	1	2,3 6 6 4,5 7,8	9,10	
3.7	5 5.0	7.5	10.0 1 Minutes	12.5 15.0

Parameter

Value

Figure 2. LC-MS/MS chromatograms of PFAS at 4 µg/L standard solution

Table 4. Retention time, asymmetry factor, and internal standards for method PFAS

Peak No.	Peak Name	Retention Time (min)	Asymmetry Factor	IS # ref
1	PFBS	4.56	1.09	¹³ C ₄ -PFOS
2	PFHxA	6.56	1.01	¹³ C ₂ -PFOA
3	¹³ C ₂ -PFHxA	6.56	0.96	¹³ C ₂ -PFOA
4	HFPO-DA	7.16	0.84	¹³ C ₂ -PFOA
5	¹³ C-HFPO-DA	7.16	0.84	¹³ C ₂ -PFOA
6	PFHpA	8.37	1.01	¹³ C ₂ -PFOA
7	ADONA	8.57	1.12	¹³ C ₄ -PFOS
8	PFHxS	8.58	0.95	¹³ C ₂ -PFOA
9	PFOA	9.65	1.06	¹³ C ₂ -PFOA
10	¹³ C ₂ -PFOA	9.66	0.98	
11	PFNA	10.66	0.99	¹³ C ₂ -PFOA
12	PFOS	10.70	1.03	¹³ C ₄ -PFOS
13	¹³ C ₄ -PFOS	10.70	1.04	
14	9CI-PF3ONS	11. <mark>1</mark> 6	1.16	¹³ C ₄ -PFOS
15	PFDA	11.50	1.03	¹³ C ₂ -PFOA
16	¹³ C ₂ -PFDA	11.50	0.95	¹³ C ₂ -PFOA
17	NMeFOSAA	11.96	1.08	
18	d ₃ -NMeFOSAA	11.97	1.05	d ₃ -NMeFOSAA
19	PFUnA	12.19	1.00	¹³ C ₂ -PFOA
20	NEtFOSAA	12.34	0.93	¹³ C ₂ -PFOA
21	d ₅ -NEtFOSAA	12.35	1.10	d ₃ -NMeFOSAA
22	11CI-PF3OUdS	12.50	1.05	¹³ C ₄ -PFOS
23	PFDoA	12.78	1.07	¹³ C ₂ -PFOA
24	PFTrDA	13.27	1.01	¹³ C ₂ -PFOA
25	PFTA	13.70	0.94	¹³ C ₂ -PFOA

Table 5. Precision and accuracy (n=6) of PFAS in fortified drinking water

Analyte	Fortified conc. (ng/L)	Mean recovery (%)	RSD (%)	Fortified conc. (ng/L)	Mean recovery (%)	RSD (%)
PFBS	16.0	107	3.3	80.0	98.3	3.6
PFHxA	16.0	108	2.3	80.0	106	2.6
HFPO-DA	16.0	84.1	7.5	80.0	88.6	6.3
PFHpA	16.0	113	2.7	80.0	117	1.3
PFHxS	16.0	120	3.4	80.0	123	2.1
ADONA	16.0	117	2.5	80.0	121	1.1
PFOA	16.0	113	2.5	80.0	119	1.6
PFNA	16.0	114	2.9	80.0	118	2.1
PFOS	16.0	113	4.5	80.0	117	2.9
9CI-PF3ONS	16.0	96.1	4.1	80.0	103	2.6
PFDA	16.0	105	3.2	80.0	111	2.1
PFUnA	16.0	96.8	5.0	80.0	103	<mark>3.</mark> 1
NMeFOSAA	16.0	103	5.2	80.0	110	5.2
11CI-PF3OUdS	16.0	88.5	5.5	80.0	97.1	4.8
NEtFOSAA	16.0	100	9.9	80.0	104	2.3
PFDoA	16.0	89.8	4.4	80.0	97.3	3.4
PFTrA	16.0	89.6	3.8	80.0	95.8	3.7
PFTA	16.0	89.0	4.8	80.0	98.1	3.3

CONCLUSIONS

This application note reports a method that can be used for the extraction and determination of 18 PFAS in drinking water with a PFAS-safe AutoTrace 280 extraction system and LC-MS/MS. The modified AutoTrace 280 extraction system ensures inertness and prevents PFAS from leaching into sample during extraction, while at same time delivering consistent and reliable performance. Both sample path cleaning in SPE and separation method precaution for the LC system maintained a low system background, meeting the EPA method requirement. The calculated LCMRLs ranged from 0.20 to 3.5 ng/L and the MDLs ranged from 0.30 to 2.5 ng/L, which were below or comparable to those values reported in U.S. EPA Method 537.1. At both 16.0 ng/L and 80.0 ng/L fortified concentration levels, all the recoveries were within the acceptable range of 70–130%. The calculated RSDs were all less than 10%, suggesting good precision. Thermo Scientific LC-MS/MS with the automatic extraction AutoTrace 280 system demonstrated an efficient, reliable, and sensitive method to fulfill the requirements of U.S. EPA Method 537.1.

REFERENCES

- index.cfm#footnote8

TRADEMARKS/LICENSING

© 2020 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is not intended to encourage use of these products in any manner that might infringe the intellectual property rights of others.

1. U.S. EPA. Basic Information about Per- and Polyfluoroalkyl Substances (PFAS). https:// www.epa.gov/pfas/basic-information-about-and-polyfluoroalkyl-substances-pfas 2. National Institute of Health, National Institute of Environmental Health Sciences, Polyfluoroalkyl Substances (PFAS). https://www.niehs.nih.gov/health/topics/agents/pfc/

3. U.S. EPA. Drinking Water Health Advisories for PFOA and PFOS. https://www.epa.gov/ Ground-water-and-drinking-water/drinking-water-health-advisories-pfoa-and-pfos 4. U.S. EPA. Method 537.1, Detections of Selected Per- and Polyfluorinated Alkyl Substances in Drinking Water by Solid Phase Extraction and Liquid Chromatography/ Tandem Mass Spectrometry (LC/MS/MS). Version 1.0, November 2018 https://www. epa.gov/water-research/epa-drinking-water-research-methods

