Detection of nanoparticles on plant tissues using sp-ICP-MS

Yuxiong Huang
Arturo A. Keller

August, 6, 2018
Where do nanomaterials come from?

Particles with at least one dimension in the nano-scale (1~100 nm)

Natural Sources
Produced by redox reactions, weathering, mining, volcanos, dust storms

Unintentionally produced NPs
Emitted to air, water and soil from combustion, wear, metal polishing and metal working, electric motors etc.

Engineered NPs
Synthesized for a specific purpose. Usually embedded in other products
Engineered Nano-Materials (ENMs)

Application of ENMs in Agriculture

- Nano-pesticide/fungicide/bactericide
- Nano-fertilizer
ENM concentrations expected to be at ng/L to ug/L levels at point of release.

Lazareva and Keller, ACS Sus Chem, 2014
ENMs in Environment

Environmental Implications of Cu Based ENMs

Theme 1
Nanoparticle characterization & synthesis of Fe-doped Cu NPs

Theme 2
% hatching
HTS with zebrafish

Theme 3
LCA of Cu ENMs

Theme 4
Effects on crop plants & soil bacteria

Theme 5
Effects on fish & invertebrates

Theme 6
Transformation of Cu ENMs in septic systems
F&T modeling of Cu concentrations

Theme 7
Alternatives Analysis case study & workshop (Cu in marine paints)

How can we “see” ENMs?

Analytical Challenge

• Can we detect ENMs in water and other environmental matrices?
• Composition?
• Size?
• Quantity?
• Other characteristics?

No EPA methods available to date…
Methods for ENMs Characterization

- **Imaging** methods (TEM, SEM, AFM) are often definitive for detection, shape and size determination. Not quantitative or representative. Labor-intensive.

- **Spectroscopic/optical** methods (UV-Vis, dynamic light scattering) simple, but subject to interferences. No elemental information. DLS needs sharp size distribution.

- **Hyphenated techniques** (Chromatographic (or other online) separation coupled with ICP-MS detection). Allow representative samples, provide good particle size resolution, high elemental sensitivity but no information on individual particles

 - FFF-ICP-MS
 - CE-ICP-MS
 - HPLC-ICP-MS

- **Single particle ICP-MS**
Methods for ENMs Characterization

Single Particle ICP-MS (spICP-MS)

- Each nanoparticle gives a transient signal (a plume of ions generated from the particle)
- Use time resolved data acquisition and analysis
- Measure particle concentration, particle effective diameter and composition
Single particle ICP-MS

Reference Materials

60 nm Gold Nanospheres

- Unagglomerated and monodisperse
- Mean diameter: 60 nm ± 4 nm
spICP-MS workflow

ICP-MS TRA data

Response vs frequency

- Analyte response factor > Mass of analyte in particle
- Nebulization efficiency (calculated from reference material)
- Analyte density
- Analyte mass fraction in sample particle

Size distribution

Tabulate and Report

<table>
<thead>
<tr>
<th>Sample</th>
<th>Date/Time</th>
<th>Type</th>
<th>Sample Name</th>
<th>Nebulization Efficiency</th>
<th>Particles</th>
<th>Conc (particles)</th>
<th>Conc (ppb)</th>
<th>Conc (ppm)</th>
<th>Conc (ppb)</th>
<th>Size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Precision and Accuracy

<table>
<thead>
<tr>
<th>Sample (Prepared concentration)</th>
<th>Observed Concentration (particles/L)</th>
<th>Observed Concentration (ng/L)</th>
<th>Observed Particle Size (nm)</th>
<th>Reference Particle Size obtained by TEM (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIST 8013 Nominal 60nm (100 ng/L)</td>
<td>5.59×10^7</td>
<td>103</td>
<td>55</td>
<td>56.0 ± 0.5</td>
</tr>
<tr>
<td>NIST 8012 Nominal 30nm (10 ng/L)</td>
<td>4.27×10^7</td>
<td>10.5</td>
<td>28</td>
<td>27.6 ± 2.1</td>
</tr>
</tbody>
</table>
Applications?

Case study: ENMs pathway into plants

- Foliar application
- Delivery to soil surface as slow-release NPs
- Delivery below ground in fertigation suspensions
- Application with biosolids

- Pathway matters in terms of delivered [ENM] and bioavailability

Can we detect ENMs in Edible Plant Tissues with spICP-MS?
Copper Oxide Nanoparticles (nano-CuO)

<table>
<thead>
<tr>
<th>Property</th>
<th>nano-CuO</th>
</tr>
</thead>
<tbody>
<tr>
<td>primary particle size (nm)</td>
<td>50<sup>a</sup></td>
</tr>
<tr>
<td>hydrodynamic diameter<sup>b</sup> (nm)</td>
<td>280 ± 15</td>
</tr>
<tr>
<td>copper content (wt %)</td>
<td>74.3 ± 1.2</td>
</tr>
<tr>
<td>main copper phase</td>
<td>monoclinic CuO</td>
</tr>
<tr>
<td>density (g/cm<sup>3</sup>)</td>
<td>6.349</td>
</tr>
<tr>
<td>BET surface area (m<sup>2</sup>/g)</td>
<td>12.31 ± 0.05</td>
</tr>
<tr>
<td>isoelectric point (IEP)</td>
<td>6.3</td>
</tr>
<tr>
<td>CCC at pH 7 (mM NaCl)</td>
<td>40</td>
</tr>
<tr>
<td>water content (wt %)</td>
<td>0.23</td>
</tr>
</tbody>
</table>

^aAs provided by the manufacturer.
^bMeasurement was done in DI water at pH 7.

TEM Image of nano-CuO

Size distribution of nano-CuO in DI at pH 7 (via DLS)
Analyze nano-CuO with spICP-MS

![Graph A](image1)

Graph A: Measured nano-CuO Concentration (ng/L) vs. Nominal nano-CuO Concentration (ng/L).

![Graph B](image2)

Graph B: Frequency vs. Particle Size (nm).

<table>
<thead>
<tr>
<th>Nominal nano-CuO concentration (ng/L)</th>
<th>Ionic Cu concentration (ng/L)</th>
<th>Median size (nm)</th>
<th>Mean size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avg.</td>
<td>Std.</td>
<td>RSD (%)</td>
</tr>
<tr>
<td>1</td>
<td>0.11</td>
<td>0.01</td>
<td>9.3</td>
</tr>
<tr>
<td>10</td>
<td>0.39</td>
<td>0.04</td>
<td>10.8</td>
</tr>
<tr>
<td>50</td>
<td>2.33</td>
<td>0.06</td>
<td>2.5</td>
</tr>
<tr>
<td>100</td>
<td>2.78</td>
<td>0.20</td>
<td>7.3</td>
</tr>
<tr>
<td>250</td>
<td>32.12</td>
<td>3.36</td>
<td>10.4</td>
</tr>
<tr>
<td>500</td>
<td>35.10</td>
<td>2.47</td>
<td>7.0</td>
</tr>
</tbody>
</table>

Detect ENMs in leaf tissues via spICP-MS

Organic Vegetables

Kale
(\textit{Brassica oleracea}, var. \textit{Acephala Lacinato})

Lettuce
(\textit{Lactuca sativa} var. green leaf cultivar)

Collard Green
(\textit{Lactuca sativa} var. green leaf cultivar)
Leaf surface roughness

ESEM

Rinse Leaf with DI water

Detect with spICP-MS

A
Lettuce

B
Collard Green

C
Kale

A

B

C

Frequency
0 20 40 60 80 100
0 20 40 60 80 100
0 20 40 60 80 100
Particle Size (nm)

nano-CuO concentration (ng/L)
0 20 40 60 80

Lettuce
Collard Green
Kale

Rinse 1 Rinse 2 Rinse 3
Expose Leaf to nano-CuO

Lettuce
Collard Green
Kale

2-hour air dry
Rinse Leaf with DI after nano-CuO exposure

Detect with spICP-MS
Rinse Leaf with DI after nano-CuO exposure

Detect with spICP-MS

- Concentrations in first rinse around 500-750 µg/L
- Residual washable concentration after 2 rinses is less than 10 µg/L
- Leaf surface roughness may influence residual
Any nano-CuO within the leaf tissues?

Enzymatic digestion

Macerozyme R-10 enzyme

- Mixed with plant tissue samples to digest tissues and release nano-CuO
- 24 hr digestion
- Neutral pH to avoid digesting nano-CuO
- Filtration
- Analyze with spICP-MS

Lettuce

Collard Green

Kale
Yes! Leaf tissues retain ENMs
Conclusions

✓ spICP-MS offers a great approach for quantitative analysis of nanoparticles

✓ Provides concentration, size distribution, composition, dissolved ion concentration

✓ Can be applied to water and some biological tissues

✓ NPs were found in all rinse water samples, as individual nanoparticles as well as aggregates

✓ The concentration of nano-CuO in rinse water was highly related to leaf surface characteristics

✓ Substantial fraction of the nano-CuO can remain on the leaf surface or perhaps even enter via the stomata.

✓ After three cycles of rinse, the residual Cu concentration were below any toxicity concern for humans
Acknowledgments