Topics in Shale Gas – Dissolved Gas Measurement

D. Gratson, R. Vitale, S. Brower, L. Work, and The Marcellus Shale Coalition

Marcellus Shale Coalition **Dissolve Methane Round Robin Study Results- Phase 2**

Because 40 - 60% error observed in Phase 1 is not acceptable

MSC Dissolved Methane Method Workgroup

- Formed to study this issue in early 2013
 - Compared notes and reviewed data/information:
 - Dissolved methane split sample data
 - Laboratory analytical protocols
 - Phase 1 Study Completed early 2015
 - Phase 1 Groundwater samples across fifteen laboratories including one State Agency Laboratory

3

NEMC 2017

NEMC 2017

ENVIRONMENTAL®

tandar

Phase 1 – Preserved vs. Unpreserved

NEMC 2017

R ENVIRONMI STANDA

- Data showed large variations within pool, range of results from two wells:
 - 7,440 to 34,600 µg/L
 - 8,260 to 44,000 µg/L
- No singular issue identified to explain bias
- Calibration varied: direct gas injection>>gas injection into vial/equilibrium>>saturated solutions

Three Calibration Approaches

- 1. Direct gas injection, Henry's Law
 - RSK-175
- 2. Saturated aqueous solution, dilutions thereof
 PA DEP 3685
 - ASTM WK43267
- 3. Inject gas standard into headspace above aqueous phase, establish equilibrium per Hc. Inject gas phase from samples, calculate aqueous phase conc.

- The Phase 1 study recommendations:
 - Procedures specific to instrument calibration
 - Sample handling/preparation
 - Analysis
 - Propensity for dilution
 - Calculations
- Of most importance is development of a certified performance sample that each laboratory can use to gauge their analysis

Phase 2 Q2 2016

- Select members of the MSC Dissolved Methane Method Work Group
- Environmental Standards, Inc.
- Environmental Services Laboratory (PT)
- 15 Participating Laboratories (14 commercial, one government)

- Reference Standards across lower concentration range
- Utilize 4 difference concentrations to allow response model evaluation
- Control dilution affect by including at least one standard below calibration upper limit

Phase 2 Design

- 15+1 laboratories
- Reference standards (PT) at 270 µg/L, 1,079 µg/L, 2,698 µg/L, and 7,015 µg/L
- Each laboratory received 3 vials at each of the four concentrations. Asked to report one at each level undiluted, duplicate analysis of remaining two vials. Only perform dilution if required

Phase 2 Design

- Analyze within 48-hours of receipt
- Provide raw results, including associated initial calibration data
 - Reference Standards across lower concentration range
 - Utilize 4 difference concentrations to allow response model evaluation
 - Control dilution affect by including at least one standard below calibration upper limit

Data Analysis

- Compiled analytical data
- Compiled data from key elements questionnaire, little change from Phase 1
- Evaluated SOPs
- Performed exploratory and statistical data analysis
- QA/QC review of all summary data
 - Few issues, none impacted data analysis

• Calibration:

- 4 Laboratories perform via direct gas injection, Henry's Constant calculation
- 2 Laboratories prepared a saturated solution
- 10 Laboratories prepared via injection of concentrated standards into vial with headspace above aqueous phase

PT Provider Results

48-hour	Assigned Concentration (µg/L)	Result A (vial 1)	Result B (vial 26)	Result C (vial 53)	Average	% Rec of Average	% RSD
Results	270	290	280	280	283	105%	2.04%
	1,079	1,160	1,100	1,130	1,130	105%	2.65%
	2,698	2,920	2,760	2,930	2,870	106%	3.32%
	7,015	7,480	6,480	6,510	6,823	97%	8.34%

Assigned Concentration (µg/L)	Result A (vial 2)	Result B (vial 27)	Result C (vial 54)	Average	% Rec of Average	% RSD	7
270	310	280	290	293	109%	5.31%	7-0ay Results
1,079	1,160	1,140	1,160	1,53	107%	1.00%	Nesuits
2,698	2,910	2,770	2,970	2,883	107%	3.56%	
7,015	7,180	6,290	6,510	6,660	95%	6.96%	

Laboratory ID	Average % Difference Standard 1 (270 μg/L)	Average % Difference Standard 2 (1079 μg/L)	Average % Difference Standard 3 (2698 μg/L)	Average % Difference Standard 4 (7015 μg/L)
FAM	-33.3%	-34.89%	-35.7%	-44.26%
ADZ	2.78%	-10.1%	23.6%	10.62%
TYR	-38.1%	-57.7%	-64.8%	-67.93%
WVN	-24.1%	-22.1%	-20.3%	-20.17%
ZIP	-42.8%	-34.5%	-43.1%	-40.48%
ILS	-22.2%	-8.2%	-5.49%	-5.92%
MRO	-33.7%	-8.48%	-9.93%	-16.89%
ОТО	-61.7%	-54.6%	-55.9%	-50.96%
ОТО-2	16.1%	14.0%	NR	NR
QSO	13.0%	34.4%	3.78%	-15.18%
CUU	-23.0%	-23.9%	-34.8%	-41.41%
RCN	13.5%	13.1%	16.8%	-17.61%
КОВ	-61.1%	-51.2%	-35.51%	-32.93%
MUN	14.8%	-8.71%	-7.34%	-32.29%
LEA	-55.6%	-54.6%	-45.3%	-60.09%
ΡΥΜ	- 2.96 %	-4.54%	-6.23%	-15.25%

NEMC 2017

Calibration

OTO Reference Samples vs. ICAL

NEMC 2017

Calibration

FAM Reference Samples vs. ICAL

Calibration

PYM Reference Samples vs. ICAL

Concentration (ug/L)

NEMC 2017

Conclusions

- Dilution, in the majority of instances, did not appear to impact bias.
- Though large bias identified, at least one laboratory had acceptable results within each of the 3 calibration approaches.

Conclusions

- <u>Calibration is the primary factor affecting bias</u>
- This bias is the result of individual steps in the sample/standard preparation process
 - Sample and standard preparation differs.
 - Equilibrium must be reached.
 - Temperature control?
 - Combination of factors.

Next Steps

- Utilize PT Provider to identify sources of low bias with participating laboratories
- Standard Operating Procedure (SOP)/Work Instruction based on procedures, activities, and techniques from study
- SOP to guide final interlaboratory study to validate procedure

Recommendations

- A certified reference standard, developed under The NELAC Institute approach is paramount
 - Laboratories have no idea they are biased and thus no way to correct
- Develop a Test Method that includes three calibration approaches but controls sample and standard handling to minimize the potential for bias

Thank You

Headquarters 1140 Valley Forge Road | PO Box 810 | Valley Forge, PA 19482 | 610.935.5577 Virginia 1412 Sachem Place, Suite 100 | Charlottesville, VA 22901 | 434.293.4039 Tennessee 8331 East Walker Springs Lane, Suite 402 | Knoxville, TN 37923 | 865.376.7590 New Mexico PO Box 29432 | Santa Fe, NM 87592 | 505.660.8521 Illinois PO Box 335 | Geneva, IL 60134 | 630.262.3979 South Carolina PO Box 14315 | Charleston, SC 29422 | 843.469.5867 New Jersey 1175 Marlkress Rd. #4222 | Cherry Hill, NJ 08034 | 304.552.1442

Web www.envstd.com | E-mail solutions@envstd.com

