Identifying consumer product ingredients and their degradates with endocrine activity
An effects directed, non-targeted LC-MS/MS approach

Gabrielle (Pecora) Black, Tarun Anumol, Thomas Young
University of California, Davis
August 7, 2017
Endocrine Disruptors in Consumer Products
(active vs. disruptor)

Collapse of a fish population after exposure to a synthetic estrogen

*Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, Manitoba, Canada R3T 2N6; and †Molecular Indicators Research Branch, United States Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268

Edited by Deborah Swackhamer, University of Minnesota, Minneapolis, MN, and accepted by the Editorial Board March 29, 2007 (received for review October 27, 2006)

Comparative study of estrogenic potencies of estradiol, tamoxifen, bisphenol-A and resveratrol with two in vitro bioassays

Wen Li†, Martin Seifert†, Ying Xu‡*, Bertold Hock†

†State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China
‡Department of Botany, Technische Universitat Muenchen at Weihenstephan, Alte Akademie 12, D-85350 Freising, Germany

Received 24 April 2003; accepted 21 July 2003

Endocrine disruptors in bottled mineral water: the E-Screen

Martin Wagner*, Jörg Oehlmann

Department Aquatic Endosiccology, Faculty of Biological Sciences, Goethe University Frankfurt am Main

The Pesticides Endosulfan, Toxaphene, and Dieldrin Have Estrogenic Effects on Human Estrogen-Sensitive Cells

Ana M. Soto, Kerrie L. Chung, and Carlos Sonnenschein

Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, MA 02111 USA
Objectives

1. Broaden breadth of extractable compounds
2. Identify commonly detected compounds in sludge samples
 • LC/MS All-Ions acquisition
 • Targeted
 • Suspect
 • Non-Targeted
3. Correlation of molecular features with biological response
 • Prioritize features using CALUX bioassays
 • Estrogen (ER) activity
 • Aryl Hydrocarbon Receptor (AhR) activity
 • Glucocorticoid (GR) activity
Workflow

Sludge Extraction

Agilent 6530 qTOF All-Ions Acquisition

Analysis

Target
Suspect
Non-Target

Fractionation

Estrogen Activity
Aryl Hydrocarbon Receptor Activity
Glucocorticoid Activity

Correlation Analysis
Experimental Design

• 14 1-gallon sludge samples collected from wastewater treatment facilities in CA
 • Sludge treatment:
 • Anaerobic digestion
 • Dewatering
 • Centrifugation
 • Polymer thickening
 • Belt press

1. Profile compounds frequently detected across samples
2. Identify endocrine active compounds present in multiple samples
Compounds of Interest

~50 compounds in literature, which:

1. Have been detected in sewage sludge
2. Are suspected endocrine disruptors

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hormones</td>
<td>Estradiol, Estrone, Norgestrel</td>
</tr>
<tr>
<td>Preservatives</td>
<td>2-phenylphenol, parabens</td>
</tr>
<tr>
<td>Plasticizers</td>
<td>BPA, Phthalates</td>
</tr>
<tr>
<td>Pesticides</td>
<td>Dichlorobenzene, DEET</td>
</tr>
<tr>
<td>Fungicides</td>
<td>Miconazole, chlotrimizole</td>
</tr>
<tr>
<td>Fragrances</td>
<td>Tonalide, Galaxolide, musk ketone</td>
</tr>
<tr>
<td>Antimicrobials</td>
<td>Triclosan, Triclocarban</td>
</tr>
<tr>
<td>Antibiotics</td>
<td>Trimethoprim, Sulfamethoxazole, Warfarin</td>
</tr>
<tr>
<td>Cosmetics</td>
<td>Benzophenone</td>
</tr>
<tr>
<td>Detergents</td>
<td>Octylphenol</td>
</tr>
</tbody>
</table>

Chose subset of this list for method optimization
Analytical Method

- Agilent 6530 qTOF
- *All-ions* Data Independent Acquisition
 - Collision Cell: 0, 10, 40eV
- Agilent Zorbax Eclipse C18 (2.1 x 100mm, 1.8uM)
Extraction of Endocrine Active Compounds from Sewage Sludge: pesticides, antibiotics, fragrances, preservatives, hormones, antimicrobials, detergents, etc.

- pH 2 and pH 7 fractions
- Sonication with 1:1 ACN:MeOH
- Agilent Bond Elut Plexa SPE
 - Washes-
 - 10% MeOH in H₂O
 - H₂O
 - Elution with 5% MTBE in MeOH
Sludge Extraction

Spike-Recovery

Matrix Factor = \frac{500 \text{ ppb standard}}{500 \text{ ppb matrix spike}}

Matrix Factor

<table>
<thead>
<tr>
<th>Compound</th>
<th>LOD (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-phenylphenol</td>
<td>0.5</td>
</tr>
<tr>
<td>4-tert-octylphenol</td>
<td>1</td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>0.25</td>
</tr>
<tr>
<td>Estriol</td>
<td>1</td>
</tr>
<tr>
<td>Estrone</td>
<td>0.25</td>
</tr>
<tr>
<td>Ethynyl estradiol</td>
<td>0.5</td>
</tr>
<tr>
<td>Metoprolol</td>
<td>0.25</td>
</tr>
<tr>
<td>Miconazole</td>
<td>0.25</td>
</tr>
<tr>
<td>Norgestrel</td>
<td>0.25</td>
</tr>
<tr>
<td>Sulfamethoxazole</td>
<td>0.25</td>
</tr>
<tr>
<td>Triclocarban</td>
<td>10</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Sludge Extraction

% Recovery

Positive Ionization

Negative Ionization

TRIMETHOPRIM
METOPROLOL
SULFAMETHOXAZOLE
CARBAMAZEPINE
MICONAZOLE
NORGESTREL
TRICLOCARBAZ
ESTRADIOL
ETHINYL ESTRADIOL
ESTRONE
2-PHENYLPHENOL
4-TERT-OCTYLPHENOL

UCDUMMY
Data Evaluation

1. Target Screen
 • List of compounds from literature

2. Suspect screen
 • Agilent Personal Compound Database Libraries
 • Water Contaminants
 • Forensic Toxicants
 • Pesticides

3. Non-Target Screen
 • Recursive Molecular Feature Extraction
 • Molecular Formula Generator
 • Confirm with reference standards, spectral libraries etc.
Suspect Screening

Tentative Identification –
• Within 15ppm mass accuracy of library
• Confirmed with at least 1 fragment ion
• Found in 3/4 extraction replicates
• >70% Score

Tentative Suspect Hits

<table>
<thead>
<tr>
<th></th>
<th>Water Contaminants</th>
<th>Forensic Toxicants</th>
<th>Pesticides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 9</td>
<td>6</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Sample 10</td>
<td>15</td>
<td>41</td>
<td>10</td>
</tr>
<tr>
<td>Sample 11</td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

![Agilent Library Hits table and graphs]
Non-Target Screen

- Recursive Molecular Feature Extraction
 (Agilent Profiler (B.08))
 - RT ± 0.2 min
 - Mass ± 10ppm
- Identify high priority features
 (Agilent Mass Profiler Professional (12.6.1))
Non-Target QC

<table>
<thead>
<tr>
<th>Compound</th>
<th>m/z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbamazepine</td>
<td>237.102255</td>
</tr>
<tr>
<td>DEET</td>
<td>192.1383142</td>
</tr>
<tr>
<td>Diclofenac</td>
<td>296.023993</td>
</tr>
<tr>
<td>Efavirenz*</td>
<td>316.0346907</td>
</tr>
<tr>
<td>Erythromycin*</td>
<td>734.93408</td>
</tr>
<tr>
<td>Flunixin</td>
<td>297.0845621</td>
</tr>
<tr>
<td>Fluoxetine</td>
<td>310.1413487</td>
</tr>
<tr>
<td>Fluvoxamine</td>
<td>319.1628124</td>
</tr>
<tr>
<td>Lamotrigine</td>
<td>256.0175</td>
</tr>
<tr>
<td>Mefenamic acid</td>
<td>242.1175787</td>
</tr>
<tr>
<td>Methyl Dihydrojasmonate*</td>
<td>227.1641946</td>
</tr>
<tr>
<td>Metoprolol</td>
<td>268.190741</td>
</tr>
<tr>
<td>Miconazole</td>
<td>414.993323</td>
</tr>
<tr>
<td>Norgestrel</td>
<td>313.216223</td>
</tr>
<tr>
<td>Sulfamethoxazole</td>
<td>254.0604</td>
</tr>
<tr>
<td>Tonalide*</td>
<td>259.205664</td>
</tr>
<tr>
<td>Triclocarban</td>
<td>314.98535</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>291.145178</td>
</tr>
</tbody>
</table>
Feature Extraction Results

- ± 20ppm mass accuracy
- Present in 75% of replicates

<table>
<thead>
<tr>
<th>Sample</th>
<th>POS</th>
<th>NEG</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 9</td>
<td>8504</td>
<td>1853</td>
<td>10,357</td>
</tr>
<tr>
<td>Sample 10</td>
<td>4915</td>
<td>2257</td>
<td>7,172</td>
</tr>
<tr>
<td>Sample 11</td>
<td>9061</td>
<td>3641</td>
<td>12,702</td>
</tr>
</tbody>
</table>
Non-Target Screen

- Prioritizing entities
 - Detection Frequency
 1. Ubiquitous use in consumer products
 2. Environmentally persistent
 3. Recalcitrant in sludge

One-way ANOVA
P-value cutoff < 0.05
Fold Change of 2 against blank

3990 --> 224 entities
224 Entities

tMSMS

Molecular Structure Correlator (Agilent B.07)

Spectra 0eV & 40eV

Triclosan m/z

Fragment 1 m/z
Tentatively Identified Compounds

<table>
<thead>
<tr>
<th>Tentatively Identified Compounds</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>(14E)-16-Pentyloxyacyclocyclohexadec-14-en-12-yn-2-one</td>
<td>3-[Bis(6-aminoethyl)amino]tetrahydro-4H-thiopyran-4-one</td>
</tr>
<tr>
<td>(2S)-2-Acetamido-6-amino-N-[(2S)-6-amino-1-hydrazino-1-oxo-2-hexanyl]hexanamide</td>
<td>6,6'-[1,2-Propanediylbis(iminomethyllylidene)]bis(4-dodecyl-2,4-cyclohexadien-1-one)</td>
</tr>
<tr>
<td>(5S)-1-(Diaminomethylene)-2-hydroxy-5-[(2S)-2-hydroxynonyl]pyrroloidinium</td>
<td>cladroic acid</td>
</tr>
<tr>
<td>(8S)-1,13-Bis[(2S)-2-methylbutanoyl]-8-[(2Z)-2-undecen-1-yl]-1,5,9,13-tetraazacyclooctadecan-6-one</td>
<td>L-Lysine, L-lysyl-N⁵-(diaminomethylene)-L-ornithyl-N⁵-(diaminomethylene)-L-ornithyl-L-phenylalanyl-L-lysyl</td>
</tr>
<tr>
<td>10-{{[2E]-2-(Hydroxyimino)acetyl]amino}-N,N-dimethyl-1-decanaminium</td>
<td>L-Serine, L-α-aspartyl-L-asparaginyl-L-α-aspartyl-L-lysyl-N⁵-(diaminomethylene)-L-ornithyl-L-prolyl-</td>
</tr>
<tr>
<td>2-{{6-[Diaminomethylene]amino}hexyl]amino}-2-oxoethyl (4-aminobutyl)carbamate</td>
<td>N-(1,4-Dioxan-2-ylmethyl)-N-methyl-6-(4-thiomorpholinyl)[1,2,5]oxadiazolo[3,4-b]pyrazin-5-amine</td>
</tr>
<tr>
<td>2-Isobutylundecyl 1,3-thiazole-5-carboxylate</td>
<td>N-[1-Cyclohexyl-3-(ethylamino)-2-propanyl]-3-[(3-methoxypropoxy)(phenyl)methyl]-1-piperidinecarboxamide</td>
</tr>
<tr>
<td>3-[2-(4-Amino-6-hydroxy-2-pyrimidinyl)ethyl]-1-{2-methoxyethyl}-1(1,3-thiazol-2-ylmethyl)urea</td>
<td>N-[1-Cyclohexyl-3-(methylamino)-2-propanyl]-3-[(3-ethoxypropoxy)(phenyl)methyl]-1-piperidinecarboxamide</td>
</tr>
<tr>
<td>triclosan</td>
<td>N²-Acetyl-N-[[3-(1-methyl-1H-pyrazol-4-yl)-1,2,4-oxadiazol-5-yl]methyl]methioninamide</td>
</tr>
</tbody>
</table>
Non-Target Screen

- Prioritizing entities
 - Detection Frequency
- Effects-Directed Analysis
 - Biological response
 - Estrogenic
 - Aryl Hydrocarbon
 - Glucocorticoid

Peak Prioritization via CALUX bioassays

- Measures ligand-receptor binding
 - Estrogen
 - Aryl hydrocarbon
- Ligand-receptor binding induces transcription of firefly luciferase
 - Luciferin/Luciferase degradation
- Measures both antagonist and agonist properties

Effect-Directed Correlation Analysis

<table>
<thead>
<tr>
<th></th>
<th>+ control</th>
<th>- control</th>
</tr>
</thead>
<tbody>
<tr>
<td>998</td>
<td>8033</td>
<td>1877</td>
</tr>
<tr>
<td>1239</td>
<td>7994</td>
<td>2450</td>
</tr>
<tr>
<td>914</td>
<td>11892</td>
<td>2229</td>
</tr>
<tr>
<td>696</td>
<td>521</td>
<td>1425</td>
</tr>
<tr>
<td>914</td>
<td>5918</td>
<td>6816</td>
</tr>
<tr>
<td>696</td>
<td>6141</td>
<td></td>
</tr>
<tr>
<td>555</td>
<td>1522</td>
<td>1421</td>
</tr>
<tr>
<td>1225</td>
<td>1331</td>
<td>1314</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Androgenic Response (T47D.ARE cell line)

• HPLC fractionation (Agilent Zorbax Eclipse C18) of 125 ppb analytical standard
• Fraction 3 = 8.8 – 12.7 minutes (57 - 76% B (acetonitrile + 0.1% FA))
Fraction 3
RT 8.8 – 12.2 min
7/26 compounds

Carbamazepine [M+H] 237.1023
RT 9.445

DEET [M+H] 192.1383
RT 10.398

Flunixin [M+H] 297.0846
RT 11.004

Fluvoxamine [M+H] 319.1628
RT 9.150

Fluoxetine [M+H] 310.1413
RT 9.549

Miconazole [M+H] 414.9933
RT 11.056

Norgestrel [M+H] 313.2162
RT 11.992
Next Steps

1. Identify & profile commonly detected compounds in sludge
2. Measure ER, AhR, & GR activity
 - Measure activity of fractions
3. Correlate compounds identified in sludge to endocrine activity
Acknowledgements

UC Davis
University of California
Agricultural & Environmental Chemistry Graduate Group
Young Lab
Dr. Christoph Moschet

Jena & Michael King Foundation
John Wick & Peggy Rathmann

Agilent Technologies

National Science Foundation Graduate Research Fellowship Program