Analysis of Hydrocarbons by In-Line GC/MS

Paul Macek¹, Ujuma Shrestha², Khanh Dang², Harsha K. Chelliah²,
1-Shimadzu Scientific Instruments, Inc., 7102 Riverwood Dr., Columbia, MD 21046
2-University of Virginia, Mechanical and Aerospace Engineering, Charlottesville, VA 22904
This project was a cooperative effort between Shimadzu Scientific Instruments, Inc., Columbia, MD and The University of Virginia Department of Engineering, Charlottesville, VA

Additional funding was provided by The United States Air Force Office of Scientific Research and by Rolls-Royce Engineering.
Motivation

- Liquid fuels are also one of the major sources of energy driving the aviation industry.
- Use of these fuels are connected to emissions.
- Studies have linked soot to adverse impact on human health and environment.

![Graph showing energy sources](image)

Annual Energy Outlook, 2015

David et al., Atmos. Environ. 43, (2009)
Motivation

- Soot formation is a combination of complex chemical and physical processes
- The dominant pathway to soot formation varies with fuel composition
- C₂H₂ as an important soot precursor
- aC₃H₄, pC₃H₄, C₄H₆ plays significant role soot growth pathways

Detailed Soot Model = Gas Chemistry Model + Soot Particle Dynamic model
Background: Detailed Mechanisms

- Commercial and military aviation fuels are complex mixers of hydrocarbons
- Consists of n-paraffins, isoparaffins, cycloparaffins and aromatics
- A reactive system involving these fuels will have huge number of additional stable and radical species
Multicomponent Fuel

Fast thermal pyrolysis

Pyrolysis

C₀⁻C₄ Oxidation

- Dodecane oxidation (JetSurF 2.0)
- $\varphi = 0.5$
- Nitrogen = 98%
- $T = 1050$ K, $P = 1$ atm
Reactor Design

Atmospheric pressure reactor

High pressure reactor
Experimental setup

Schematic of experimental setup showing: 1 - nitrogen gas cylinder; 2 - mass flow controllers; 3 - micro flow reactor in vented high-pressure enclosure chamber; 4 - fuel atomizer; 5 - atomizer housing; 6 - liquid fuel pump; 7 - fuel reservoir; 8 - quartz microprobe; 9 - needle valve; 10 – GCMS system; 11 - pressure gauge; 12 - vacuum pump.
The Reactor
Vacuum Pump

The pump maintains a pressure of 0.5 atmosphere on the sampling system.
The GC/MS

6-port valve in a heated enclosure

Gauges for monitoring vacuum status. One is on the in-line to the valve. One on the exit-line.

Connection to the reactor. The GC/MS is running in liquid mode so the line is disconnected in this photo.
Connection to the GC/MS

The heater jacket is not installed on the line in this photo.

Mass flow controller
Controls the flow out of the reactor.
GC-MS Chromatogram (JP-8)

- Propylene
- 1,3-Butadiene
- 1,3-Cyclopentadiene
- 1,3-Pentadiene
- 2-Butene
- Butane
- Propadiene
- Cyclopentene
- 1,3-Cyclohexadiene
- 1,2-Butadiene
- Toulene
- Ethylbenzene
- p-xylene
- m-xylene
- Trimethylbenzene
- Benzene
- Indene

Retention Time:
$t \approx 590 \text{ ms}$
Analytical Goal

- Actual Samples will be gaseous and at high temperatures
- Gas standards are only available for lighter compounds
- There is a need to calibrate the instrument for heavier compounds
 - Naphthalene
 - Anthracene
- We are establishing correlations between available gaseous standards and standards of the same components in solutions
 - Hexane
 - Benzene
 - Cyclohexene (future work)
Preliminary Results (290 ppmv hexane)

![Bar chart showing intensity vs runs for gas and liquid samples.](chart.png)
References